IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2431-d1051107.html
   My bibliography  Save this article

Indicators, Goals, and Assessment of the Water Sustainability in China: A Provincial and City—Level Study

Author

Listed:
  • Peipei Zhang

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100043, China)

  • Yuanyuan Qu

    (Yantai Consulting & Designing Institute of Environmental Engineering, Yantai 264000, China)

  • Ye Qiang

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100043, China
    The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100043, China)

  • Yang Xiao

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100043, China
    The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100043, China)

  • Chengjun Chu

    (Center of Environmental Status and Plan Assessment, Chinese Academy of Environmental Planning, Beijing 100043, China)

  • Changbo Qin

    (Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100043, China
    The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100043, China)

Abstract

The United Nations and scholars called for more attention and efforts for cleaner water and water sustainability. This study established a water sustainability evaluating method framework, including indicators, goals, and methods and performs provincial and city−level assessments as case studies. The framework involves six fields, surface water quality, marine environmental quality, water−soil−agriculture, water infrastructure, water conservation, aquatic ecology, water−efficient use, and pollutant emission reduction. The methods innovatively integrate multi fields and concerns of water sustainability while providing a goal−oriented evaluation and implementing the United Nations’ call for the refinement and clarification of SDGs. China’s overall water sustainability was evaluated as 0.821 in 2021, and have performed well in surface water quality, sea quality, water conservation, and aquatic ecology fields while performing poorly in the water−soil−agriculture field. The overall strategy, policy, and action for water sustainability could be developed based on the evaluation. The water sustainability evaluation presented the regional and field/indicator differentiations. It is necessary to implement regionally classified policies and differentiated management for sustainable water development. The correlation analysis with socioeconomic factors implies the complicated and intimate interaction between socioeconomic development and water sustainability while revealing that development stages and the inherent conditions of natural ecology and water sources bring about the differentiations. A comprehensive evaluation of water sustainability may be three−dimensional, involving water quality and ecology, development related to water, and water resources and utilization.

Suggested Citation

  • Peipei Zhang & Yuanyuan Qu & Ye Qiang & Yang Xiao & Chengjun Chu & Changbo Qin, 2023. "Indicators, Goals, and Assessment of the Water Sustainability in China: A Provincial and City—Level Study," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2431-:d:1051107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenci Xu & Sophia N. Chau & Xiuzhi Chen & Jian Zhang & Yingjie Li & Thomas Dietz & Jinyan Wang & Julie A. Winkler & Fan Fan & Baorong Huang & Shuxin Li & Shaohua Wu & Anna Herzberger & Ying Tang & De, 2020. "Assessing progress towards sustainable development over space and time," Nature, Nature, vol. 577(7788), pages 74-78, January.
    2. Sachs,Jeffrey D. & Kroll,Christian & Lafortune,Guillame & Fuller,Grayson & Woelm,Finn, 2022. "Sustainable Development Report 2022," Cambridge Books, Cambridge University Press, number 9781009210089.
    3. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ke Li & Lei Gao & Zhaoxia Guo & Yucheng Dong & Enayat A. Moallemi & Gang Kou & Meiqian Chen & Wenhao Lin & Qi Liu & Michael Obersteiner & Matteo Pedercini & Brett A. Bryan, 2024. "Safeguarding China’s long-term sustainability against systemic disruptors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Xinyi Zhang & Li Zhang & Linyan Bai & Jingjuan Liao & Bowei Chen & Min Yan, 2023. "Assessment of Localized Targets of Sustainable Development Goals and Future Development on Hainan Island," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    5. Huang, Hongrong & Zhuo, La & Wang, Wei & Wu, Pute, 2023. "Resilience assessment of blue and green water resources for staple crop production in China," Agricultural Water Management, Elsevier, vol. 288(C).
    6. Rekha Rao-Nicholson & Htwe Htwe Thein & Yifan Zhong, 2024. "A thematic analysis of the links between multinational enterprises’ corporate social responsibility and the Sustainable Development Goals in Myanmar," Journal of International Business Policy, Palgrave Macmillan, vol. 7(2), pages 203-223, June.
    7. Manal Ammari & Mohammed Chentouf & Mohammed Ammari & Laïla Ben Allal, 2022. "Assessing National Progress in Achieving the Sustainable Development Goals: A Case Study of Morocco," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    8. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    9. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    10. Kornsorn Srikulnath & Nattakan Ariyaraphong & Worapong Singchat & Thitipong Panthum & Artem Lisachov & Syed Farhan Ahmad & Kyudong Han & Narongrit Muangmai & Prateep Duengkae, 2022. "Asian Elephant Evolutionary Relationships: New Perspectives from Mitochondrial D-Loop Haplotype Diversity," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    11. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    12. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    13. Xiaojun Zhang & Weiqiao Wang & Yunan Bai & Yong Ye, 2022. "How Has China Structured Its Ecological Governance Policy System?—A Case from Fujian Province," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    14. Satar Bakhsh & Md Shabbir Alam & Wei Zhang, 2024. "Green finance and Sustainable Development Goals: is there a role for geopolitical uncertainty?," Economic Change and Restructuring, Springer, vol. 57(4), pages 1-30, August.
    15. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    16. Yu, Rong & Li, Jianhong, 2024. "Does fintech influence sustainable development under natural resource constraints: insights from 270 Chinese cities," Resources Policy, Elsevier, vol. 91(C).
    17. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    18. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    19. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Han, Bo & Jin, Xiaobin & Sun, Rui & Li, Hanbing & Liang, Xinyuan & Zhou, Yinkang, 2023. "Understanding land-use sustainability with a systematical framework: An evaluation case of China," Land Use Policy, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2431-:d:1051107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.