IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i2p1166-d1029773.html
   My bibliography  Save this article

Analysis of the Spatiotemporal Evolution of the Net Carbon Sink Efficiency and Its Influencing Factors at the City Level in Three Major Urban Agglomerations in China

Author

Listed:
  • Shiguang Shen

    (College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

  • Chengcheng Wu

    (College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

  • Zhenyu Gai

    (College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

  • Chenjing Fan

    (College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

Abstract

The implementation of carbon peaking and carbon neutrality is an essential measure to reduce greenhouse gas emissions and actively respond to climate change. The net carbon sink efficiency (NCSE), as an effective tool to measure the carbon budget capacity, is important in guiding the carbon emission reduction among cities and the maintenance of sustainable economic development. In this paper, NCSE values are used as a measure of the carbon budget capacity to measure the spatiotemporal evolution of the carbon neutral capacity of three major urban agglomerations (UAs) in China during 2007–2019. The clustering characteristics of the NCSE of these three major UAs, and various influencing factors such as carbon emissions, are analyzed using a spatiotemporal cube model and spatial and temporal series clustering. The results reveal the following. (1) From the overall perspective, the carbon emissions of the three major UAs mostly exhibited a fluctuating increasing trend and a general deficit during the study period. Moreover, the carbon sequestration showed a slightly decreasing trend, but not much fluctuation in general. (2) From the perspective of UAs, the cities in the Beijing–Tianjin–Hebei UA are dominated by low–low clustering in space and time; this clustering pattern is mainly concentrated in Beijing, Xingtai, Handan, and Langfang. The NCSE values in the Yangtze River Delta UA centered on Shanghai, Nanjing, and the surrounding cities exhibited high–high clustering in 2019, while Changzhou, Ningbo, and the surrounding cities exhibited low–high clustering. The NCSE values of the remaining cities in the Pearl River Delta UA, namely Guangzhou, Shenzhen, and Zhuhai, exhibited multi-cluster patterns that were not spatially and temporally significant, and the spatiotemporal clusters were found to be scattered. (3) In terms of the influencing factors, the NCSE of the Beijing–Tianjin–Hebei UA was found to be significantly influenced by the industrial structure and GDP per capita, that of the Yangtze River Delta UA was found to be significantly influenced by the industrial structure, and that of the Pearl River Delta UA was found to be significantly influenced by the population density and technology level. These findings can provide a reference and suggestions for the governments of different UAs to formulate differentiated carbon-neutral policies.

Suggested Citation

  • Shiguang Shen & Chengcheng Wu & Zhenyu Gai & Chenjing Fan, 2023. "Analysis of the Spatiotemporal Evolution of the Net Carbon Sink Efficiency and Its Influencing Factors at the City Level in Three Major Urban Agglomerations in China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1166-:d:1029773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/2/1166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/2/1166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    3. Pan, Xiongfeng & Guo, Shucen & Han, Cuicui & Wang, Mengyang & Song, Jinbo & Liao, Xianchun, 2020. "Influence of FDI quality on energy efficiency in China based on seemingly unrelated regression method," Energy, Elsevier, vol. 192(C).
    4. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    5. Jingqi Sun & Jing Shi & Boyang Shen & Shuqing Li & Yuwei Wang, 2018. "Nexus among Energy Consumption, Economic Growth, Urbanization and Carbon Emissions: Heterogeneous Panel Evidence Considering China’s Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    6. Kofi Adom, Philip & Bekoe, William & Amuakwa-Mensah, Franklin & Mensah, Justice Tei & Botchway, Ebo, 2012. "Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics," Energy, Elsevier, vol. 47(1), pages 314-325.
    7. Chuai, Xiaowei & Yuan, Ye & Zhang, Xiuying & Guo, Xiaomin & Zhang, Xiaolei & Xie, Fangjian & Zhao, Rongqin & Li, Jianbao, 2019. "Multiangle land use-linked carbon balance examination in Nanjing City, China," Land Use Policy, Elsevier, vol. 84(C), pages 305-315.
    8. Zhenfeng Shao & Lin Ding & Deren Li & Orhan Altan & Md. Enamul Huq & Congmin Li, 2020. "Exploring the Relationship between Urbanization and Ecological Environment Using Remote Sensing Images and Statistical Data: A Case Study in the Yangtze River Delta, China," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    9. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    10. Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianlan Su & Qin Long & Shiwen Lin & Zhongyu Hu & Yuxin Zeng, 2024. "Carbon neutralization in Yunnan: harnessing the power of forests to mitigate carbon emissions and promote sustainable development in the Southwest forest area of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(8), pages 1-36, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenggen Fan & Wentong Xia & Hu Yu & Ji Liu & Binghua Liu, 2024. "Spatiotemporal Pattern and Spatial Convergence of Land Use Carbon Emission Efficiency in the Pan-Pearl River Delta: Based on the Difference in Land Use Carbon Budget," Land, MDPI, vol. 13(5), pages 1-27, May.
    2. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    3. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    4. Bishan Wu, 2024. "Low-carbon development mechanism of energy industry from the perspective of carbon neutralization," Energy & Environment, , vol. 35(2), pages 628-643, March.
    5. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Zhang, Qian & Cheng, Baodong & Diao, Gang & Tao, Chenlu & Wang, Can, 2023. "Does China's natural forest logging ban affect the stability of the timber import trade network?," Forest Policy and Economics, Elsevier, vol. 152(C).
    7. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    9. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    10. Ogwu Stephen Obinozie & Eze Afamefuna A. & Uzoigwe Joshua C. & Orji Anthony & Maduka Anne Chinonye & Onwe Joshua Chukwuma, 2023. "Global Warming and Atmospheric Carbon: Is Carbon Sequestration a Myth or Reality?," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 28-56, March.
    11. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    12. Ding, Tao & Li, Hao & Tan, Ruipeng & Zhao, Xin, 2023. "How does geopolitical risk affect carbon emissions?: An empirical study from the perspective of mineral resources extraction in OECD countries," Resources Policy, Elsevier, vol. 85(PB).
    13. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    14. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    15. Duan Huang & Lijie Xu & Shilin Zou & Bo Liu & Hengkai Li & Luoman Pu & Hong Chi, 2024. "Mapping Paddy Rice in Rice–Wetland Coexistence Zone by Integrating Sentinel-1 and Sentinel-2 Data," Agriculture, MDPI, vol. 14(3), pages 1-20, February.
    16. Qingqing Li & Yueru Zhu & Zunling Zhu, 2022. "Calculation and Optimization of the Carbon Sink Benefits of Green Space Plants in Residential Areas: A Case Study of Suojin Village in Nanjing," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    17. Zhengyu Zhang & Gui Jin, 2024. "Measurement of Agricultural Eco-Efficiency and Analysis of Its Influencing Factors: Insights from 44 Agricultural Counties in Liaoning Province," Land, MDPI, vol. 13(3), pages 1-16, February.
    18. Pan Jiang & Mengyue Li & Yuting Zhao & Xiujuan Gong & Ruifeng Jin & Yuhan Zhang & Xue Li & Liang Liu, 2022. "Does Environmental Regulation Improve Carbon Emission Efficiency? Inspection of Panel Data from Inter-Provincial Provinces in China," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    19. Mingxu Liu & Fang Shang & Xingjie Lu & Xin Huang & Yu Song & Bing Liu & Qiang Zhang & Xuejun Liu & Junji Cao & Tingting Xu & Tiantian Wang & Zhenying Xu & Wen Xu & Wenling Liao & Ling Kang & Xuhui Cai, 2022. "Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Junyi Liu & Zhixiang Wu & Siqi Yang & Chuan Yang, 2022. "Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China," IJERPH, MDPI, vol. 19(21), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1166-:d:1029773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.