IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p213-d1012698.html
   My bibliography  Save this article

Effects of Pesticide Intake on Gut Microbiota and Metabolites in Healthy Adults

Author

Listed:
  • Jun Ueyama

    (Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan)

  • Mai Hayashi

    (Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan)

  • Masaaki Hirayama

    (Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan)

  • Hiroshi Nishiwaki

    (Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan)

  • Mikako Ito

    (Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan)

  • Isao Saito

    (Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan)

  • Yoshio Tsuboi

    (Department of Neurology, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan)

  • Tomohiko Isobe

    (Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan)

  • Kinji Ohno

    (Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan)

Abstract

Animal experiments have indicated that pesticides may affect gut microbiota, which is responsible for the production of short-chain fatty acids (SCFAs) and polyamines. Here, we present a preliminary observation of the relationship between pesticide exposure and fecal SCFAs and polyamines in Japanese adults. In total, 38 healthy adults aged 69 ± 10 years (mean ± SD) were recruited and subjected to stool and spot urine tests. Urinary dialkylphosphates (DAP), 3-phenoxybenzoic acid, and glyphosate were assayed as pesticide exposure markers of organophosphorus insecticide (OP), a pyrethroid insecticide, and glyphosate, respectively. Significant negative correlations ( p < 0.05, Spearman’s rank correlation coefficient) were found between urinary DAP, fecal acetate (r = −0.345), and lactate (r = −0.391). Multiple regression analyses revealed that urinary DAP was a significant explanatory variable of fecal acetate concentration ( p < 0.001, β = −24.0, SE = 4.9, t = −4.9) with some vegetable intake (adjusted R -square = 0.751). These findings suggest that OP exposure is independently associated with lower fecal acetate levels, which may contribute to human health in middle-aged and older adult groups. Given that the human gut environment has long-term effects on the host, studies on wide-range age groups, including children, are necessary.

Suggested Citation

  • Jun Ueyama & Mai Hayashi & Masaaki Hirayama & Hiroshi Nishiwaki & Mikako Ito & Isao Saito & Yoshio Tsuboi & Tomohiko Isobe & Kinji Ohno, 2022. "Effects of Pesticide Intake on Gut Microbiota and Metabolites in Healthy Adults," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:213-:d:1012698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daphna Rothschild & Omer Weissbrod & Elad Barkan & Alexander Kurilshikov & Tal Korem & David Zeevi & Paul I. Costea & Anastasia Godneva & Iris N. Kalka & Noam Bar & Smadar Shilo & Dar Lador & Arnau Vi, 2018. "Environment dominates over host genetics in shaping human gut microbiota," Nature, Nature, vol. 555(7695), pages 210-215, March.
    2. Tiina Mattila & Tiina Santonen & Helle Raun Andersen & Andromachi Katsonouri & Tamás Szigeti & Maria Uhl & Wojciech Wąsowicz & Rosa Lange & Beatrice Bocca & Flavia Ruggieri & Marike Kolossa-Gehring & , 2021. "Scoping Review—The Association between Asthma and Environmental Chemicals," IJERPH, MDPI, vol. 18(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jos A. Bosch & Max Nieuwdorp & Aeilko H. Zwinderman & Mélanie Deschasaux & Djawad Radjabzadeh & Robert Kraaij & Mark Davids & Susanne R. Rooij & Anja Lok, 2022. "The gut microbiota and depressive symptoms across ethnic groups," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. C. E. Dubé & M. Ziegler & A. Mercière & E. Boissin & S. Planes & C. A. -F. Bourmaud & C. R. Voolstra, 2021. "Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Yee Sang Wong & Nicholas John Osborne, 2022. "Biodiversity Effects on Human Mental Health via Microbiota Alterations," IJERPH, MDPI, vol. 19(19), pages 1-13, September.
    4. Qinnan Yang & Mallory Haute & Nate Korth & Scott E. Sattler & John Toy & Devin J. Rose & James C. Schnable & Andrew K. Benson, 2022. "Genetic analysis of seed traits in Sorghum bicolor that affect the human gut microbiome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Manish Boolchandani & Kevin S. Blake & Drake H. Tilley & Miguel M. Cabada & Drew J. Schwartz & Sanket Patel & Maria Luisa Morales & Rina Meza & Giselle Soto & Sandra D. Isidean & Chad K. Porter & Mark, 2022. "Impact of international travel and diarrhea on gut microbiome and resistome dynamics," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Braden T Tierney & Yingxuan Tan & Zhen Yang & Bing Shui & Michaela J Walker & Benjamin M Kent & Aleksandar D Kostic & Chirag J Patel, 2022. "Systematically assessing microbiome–disease associations identifies drivers of inconsistency in metagenomic research," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-18, March.
    7. Zhirui Cao & Dejun Fan & Yang Sun & Ziyu Huang & Yue Li & Runping Su & Feng Zhang & Qing Li & Hongju Yang & Fen Zhang & Yinglei Miao & Ping Lan & Xiaojian Wu & Tao Zuo, 2024. "The gut ileal mucosal virome is disturbed in patients with Crohn’s disease and exacerbates intestinal inflammation in mice," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Ren Dodge & Eric W. Jones & Haolong Zhu & Benjamin Obadia & Daniel J. Martinez & Chenhui Wang & Andrés Aranda-Díaz & Kevin Aumiller & Zhexian Liu & Marco Voltolini & Eoin L. Brodie & Kerwyn Casey Huan, 2023. "A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Fanette Fontaine & Sondra Turjeman & Karel Callens & Omry Koren, 2023. "The intersection of undernutrition, microbiome, and child development in the first years of life," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    11. Carsten Eriksen & Janne Marie Moll & Pernille Neve Myers & Ana Rosa Almeida Pinto & Niels Banhos Danneskiold-Samsøe & Rasmus Ibsen Dehli & Lisbeth Buus Rosholm & Marlene Danner Dalgaard & John Penders, 2023. "IgG and IgM cooperate in coating of intestinal bacteria in IgA deficiency," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Karolina Skonieczna-Żydecka & Ewa Stachowska & Dominika Maciejewska & Karina Ryterska & Joanna Palma & Maja Czerwińska-Rogowska & Mariusz Kaczmarczyk & Anna Gudan & Honorata Mruk & Barbara Świniarska , 2018. "The Digestive Health among Participants of the Woodstock Rock Festival in Poland—A Cross-Sectional Survey," IJERPH, MDPI, vol. 15(10), pages 1-13, October.
    13. Szabolcs Lovas & Károly Nagy & János Sándor & Balázs Ádám, 2021. "Presumed Exposure to Chemical Pollutants and Experienced Health Impacts among Warehouse Workers at Logistics Companies: A Cross-Sectional Survey," IJERPH, MDPI, vol. 18(13), pages 1-14, July.
    14. Lharbi Dridi & Fernando Altamura & Emmanuel Gonzalez & Olivia Lui & Ryszard Kubinski & Reilly Pidgeon & Adrian Montagut & Jasmine Chong & Jianguo Xia & Corinne F. Maurice & Bastien Castagner, 2023. "Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Ke Tao & Ib T. Jensen & Sha Zhang & Eber Villa-Rodríguez & Zuzana Blahovska & Camilla Lind Salomonsen & Anna Martyn & Þuríður Nótt Björgvinsdóttir & Simon Kelly & Luc Janss & Marianne Glasius & Rasmus, 2024. "Nitrogen and Nod factor signaling determine Lotus japonicus root exudate composition and bacterial assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Fiona B. Tamburini & Dylan Maghini & Ovokeraye H. Oduaran & Ryan Brewster & Michaella R. Hulley & Venesa Sahibdeen & Shane A. Norris & Stephen Tollman & Kathleen Kahn & Ryan G. Wagner & Alisha N. Wade, 2022. "Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Zahraa Al Bander & Marloes Dekker Nitert & Aya Mousa & Negar Naderpoor, 2020. "The Gut Microbiota and Inflammation: An Overview," IJERPH, MDPI, vol. 17(20), pages 1-21, October.
    18. Qiwen Cheng & Rosa Krajmalnik-Brown & John K. DiBaise & Juan Maldonado & M. Aaron Guest & Michael Todd & Shelby L. Langer, 2023. "Relationship Functioning and Gut Microbiota Composition among Older Adult Couples," IJERPH, MDPI, vol. 20(8), pages 1-17, April.
    19. Andrea Quagliariello & Alessandra Modi & Gabriel Innocenti & Valentina Zaro & Cecilia Conati Barbaro & Annamaria Ronchitelli & Francesco Boschin & Claudio Cavazzuti & Elena Dellù & Francesca Radina & , 2022. "Ancient oral microbiomes support gradual Neolithic dietary shifts towards agriculture," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:213-:d:1012698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.