IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5254-d802325.html
   My bibliography  Save this article

Interaction of Pelargonium sidoides Compounds with Lactoferrin and SARS-CoV-2: Insights from Molecular Simulations

Author

Listed:
  • Federico Iacovelli

    (Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
    These authors contributed equally to this work.)

  • Gaetana Costanza

    (Virology Unit, Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
    These authors contributed equally to this work.)

  • Alice Romeo

    (Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy)

  • Terenzio Cosio

    (PhD Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
    Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy)

  • Caterina Lanna

    (Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy)

  • Antonino Bagnulo

    (NEILOS SRL, 80063 Piano di Sorrento, Italy)

  • Umberto Di Maio

    (NEILOS SRL, 80063 Piano di Sorrento, Italy)

  • Alice Sbardella

    (Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy)

  • Roberta Gaziano

    (PhD Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Sandro Grelli

    (Virology Unit, Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy)

  • Ettore Squillaci

    (Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy)

  • Alessandro Miani

    (Department of Environmental Sciences and Policy, University of Milan, 20133 Milan, Italy)

  • Prisco Piscitelli

    (Health Education and Sustainable Development, University of Naples Federico II, 80125 Naples, Italy)

  • Luca Bianchi

    (Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy)

  • Mattia Falconi

    (Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
    These authors contributed equally to this work.)

  • Elena Campione

    (Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
    These authors contributed equally to this work.)

Abstract

(1) Background: Pelargonium sidoides extracts and lactoferrin are two important natural, anti-inflammatory, and antiviral agents, which can interfere with the early stages of SARS-CoV-2 infection. Molecular docking and molecular dynamics simulation approaches have been applied to check for the occurrence of interactions of the Pelargonium sidoides compounds with lactoferrin and with SARS-CoV-2 components. (2) Methods: Computational methods have been applied to confirm the hypothesis of a direct interaction between PEL compounds and the lactoferrin protein and between Pelargonium sidoides compounds and SARS-CoV-2 Spike, 3CLPro, RdRp proteins, and membrane. Selected high-score complexes were structurally investigated through classical molecular dynamics simulation, while the interaction energies were evaluated using the molecular mechanics energies combined with generalized Born and surface area continuum solvation method. (3) Results: Computational analyses suggested that Pelargonium sidoides extracts can interact with lactoferrin without altering its structural and dynamical properties. Furthermore, Pelargonium sidoides compounds should have the ability to interfere with the Spike glycoprotein, the 3CLPro, and the lipid membrane, probably affecting the functional properties of the proteins inserted in the double layer. (4) Conclusion: Our findings suggest that Pelargonium sidoides may interfere with the mechanism of infection of SARS-CoV-2, especially in the early stages.

Suggested Citation

  • Federico Iacovelli & Gaetana Costanza & Alice Romeo & Terenzio Cosio & Caterina Lanna & Antonino Bagnulo & Umberto Di Maio & Alice Sbardella & Roberta Gaziano & Sandro Grelli & Ettore Squillaci & Ales, 2022. "Interaction of Pelargonium sidoides Compounds with Lactoferrin and SARS-CoV-2: Insights from Molecular Simulations," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5254-:d:802325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenming Jin & Xiaoyu Du & Yechun Xu & Yongqiang Deng & Meiqin Liu & Yao Zhao & Bing Zhang & Xiaofeng Li & Leike Zhang & Chao Peng & Yinkai Duan & Jing Yu & Lin Wang & Kailin Yang & Fengjiang Liu & Re, 2020. "Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors," Nature, Nature, vol. 582(7811), pages 289-293, June.
    2. Elena Campione & Caterina Lanna & Terenzio Cosio & Luigi Rosa & Maria Pia Conte & Federico Iacovelli & Alice Romeo & Mattia Falconi & Claudia Del Vecchio & Elisa Franchin & Maria Stella Lia & Marilena, 2021. "Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence," IJERPH, MDPI, vol. 18(20), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Abdelnabi & Dirk Jochmans & Kim Donckers & Bettina Trüeb & Nadine Ebert & Birgit Weynand & Volker Thiel & Johan Neyts, 2023. "Nirmatrelvir-resistant SARS-CoV-2 is efficiently transmitted in female Syrian hamsters and retains partial susceptibility to treatment," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Nik Franko & Ana Palma Teixeira & Shuai Xue & Ghislaine Charpin-El Hamri & Martin Fussenegger, 2021. "Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Mohammad (Behdad) Jamshidi & Omid Moztarzadeh & Alireza Jamshidi & Ahmed Abdelgawad & Ayman S. El-Baz & Lukas Hauer, 2023. "Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning," Future Internet, MDPI, vol. 15(4), pages 1-15, April.
    6. Lisa-Marie Funk & Gereon Poschmann & Fabian Rabe von Pappenheim & Ashwin Chari & Kim M. Stegmann & Antje Dickmanns & Marie Wensien & Nora Eulig & Elham Paknia & Gabi Heyne & Elke Penka & Arwen R. Pear, 2024. "Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Ala M. Shaqra & Sarah N. Zvornicanin & Qiu Yu J. Huang & Gordon J. Lockbaum & Mark Knapp & Laura Tandeske & David T. Bakan & Julia Flynn & Daniel N. A. Bolon & Stephanie Moquin & Dustin Dovala & Nese , 2022. "Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yida Jiang & Xinghe Zhang & Honggang Nie & Jianxiong Fan & Shuangshuang Di & Hui Fu & Xiu Zhang & Lijuan Wang & Chun Tang, 2024. "Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Zeyin Yan & Dacong Wei & Xin Li & Lung Wa Chung, 2024. "Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Michael H. J. Rhodin & Archie C. Reyes & Anand Balakrishnan & Nalini Bisht & Nicole M. Kelly & Joyce Sweeney Gibbons & Jonathan Lloyd & Michael Vaine & Tessa Cressey & Miranda Crepeau & Ruichao Shen &, 2024. "The small molecule inhibitor of SARS-CoV-2 3CLpro EDP-235 prevents viral replication and transmission in vivo," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Xiangrui Jiang & Haixia Su & Weijuan Shang & Feng Zhou & Yan Zhang & Wenfeng Zhao & Qiumeng Zhang & Hang Xie & Lei Jiang & Tianqing Nie & Feipu Yang & Muya Xiong & Xiaoxing Huang & Minjun Li & Ping Ch, 2023. "Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Ella Borberg & Eran Granot & Fernando Patolsky, 2022. "Ultrafast one-minute electronic detection of SARS-CoV-2 infection by 3CLpro enzymatic activity in untreated saliva samples," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Tetsuro Matsunaga & Hirohito Sano & Katsuya Takita & Masanobu Morita & Shun Yamanaka & Tomohiro Ichikawa & Tadahisa Numakura & Tomoaki Ida & Minkyung Jung & Seiryo Ogata & Sunghyeon Yoon & Naoya Fujin, 2023. "Supersulphides provide airway protection in viral and chronic lung diseases," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    14. Rana Abdelnabi & Caroline S. Foo & Dirk Jochmans & Laura Vangeel & Steven De Jonghe & Patrick Augustijns & Raf Mols & Birgit Weynand & Thanaporn Wattanakul & Richard M. Hoglund & Joel Tarning & Charle, 2022. "The oral protease inhibitor (PF-07321332) protects Syrian hamsters against infection with SARS-CoV-2 variants of concern," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Norman Tran & Sathish Dasari & Sarah A. E. Barwell & Matthew J. McLeod & Subha Kalyaanamoorthy & Todd Holyoak & Aravindhan Ganesan, 2023. "The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Dongtak Lee & Hyo Gi Jung & Dongsung Park & Junho Bang & Da Yeon Cheong & Jae Won Jang & Yonghwan Kim & Seungmin Lee & Sang Won Lee & Gyudo Lee & Yeon Ho Kim & Ji Hye Hong & Kyo Seon Hwang & Jeong Hoo, 2024. "Bioengineered amyloid peptide for rapid screening of inhibitors against main protease of SARS-CoV-2," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5254-:d:802325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.