Author
Listed:
- Hengrui Liu
(Columbia University)
- Arie Zask
(Columbia University)
- Farhad Forouhar
(Columbia University Irving Medical Center)
- Sho Iketani
(Columbia University Irving Medical Center
Columbia University Irving Medical Center)
- Alana Williams
(Columbia University)
- Daniel R. Vaz
(Columbia University)
- Dahlya Habashi
(Columbia University)
- Karenna Choi
(Columbia University)
- Samuel J. Resnick
(Columbia University Irving Medical Center)
- Seo Jung Hong
(Columbia University Irving Medical Center)
- David H. Lovett
(Columbia University Irving Medical Center
Columbia University Irving Medical Center)
- Tian Bai
(Columbia University Irving Medical Center
Columbia University Irving Medical Center)
- Alejandro Chavez
(University of California San Diego)
- David D. Ho
(Columbia University Irving Medical Center
Columbia University Irving Medical Center
Columbia University Irving Medical Center)
- Brent R. Stockwell
(Columbia University
Columbia University
Columbia University Irving Medical Center
Columbia University Irving Medical Center)
Abstract
Variants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.8 billion compounds from a DNA-encoded chemical library and identify small molecules that are non-covalent inhibitors targeting the conserved 3CL protease of SARS-CoV-2 and other coronaviruses. We perform structure-based optimization, leading to the creation of a series of potent, non-covalent SARS-CoV-2 3CL protease inhibitors, for coronavirus infections. To characterize their binding mechanism to the 3CL protease, we determine 16 co-crystal structures and find that optimized inhibitors specifically interact with both protomers of the native homodimer of 3CL protease. Since 3CL protease is catalytically competent only in the dimeric state, these data provide insight into the design of drug-like inhibitors targeting the native homodimer state. With a binding mode different from the covalent 3CL inhibitor nirmatrelvir, the protease inhibitor in the COVID drug Paxlovid, these compounds may overcome resistance reported for nirmatrelvir and complement its clinical utility.
Suggested Citation
Hengrui Liu & Arie Zask & Farhad Forouhar & Sho Iketani & Alana Williams & Daniel R. Vaz & Dahlya Habashi & Karenna Choi & Samuel J. Resnick & Seo Jung Hong & David H. Lovett & Tian Bai & Alejandro Ch, 2025.
"Development of small molecule non-covalent coronavirus 3CL protease inhibitors from DNA-encoded chemical library screening,"
Nature Communications, Nature, vol. 16(1), pages 1-18, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55421-5
DOI: 10.1038/s41467-024-55421-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55421-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.