IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i8p4811-d794671.html
   My bibliography  Save this article

Effects of Alkali on Water Soluble Hexavalent Chromium in Ordinary Portland Cement

Author

Listed:
  • Fan Shi

    (School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China)

  • Dehong Jiang

    (Chongzuo South Cement Co., Ltd., Chongzuo 532200, China)

  • Junrong Ji

    (Chongzuo South Cement Co., Ltd., Chongzuo 532200, China)

  • Jinsheng Yan

    (Chongzuo South Cement Co., Ltd., Chongzuo 532200, China)

  • Huxing Chen

    (School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Due to the toxicity and mobility of chromium, the disposal of chromium-containing waste is a pressing issue. Co-processing of chromium-containing waste in a cement kiln is currently one of the most effective methods. However, the presence of water-soluble hexavalent chromium (Cr(VI)) in cement limits the use of this method. In this study, Na 2 CO 3 was used to simulate alkali in industrial raw materials to investigate the pattern of influence of alkali content on water-soluble hexavalent chromium. The mechanisms associated with the oxidation and dissolution of chromium were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma emission spectrometry (ICP-OES). The proportion of Cr(VI) in the clinker detected by XPS increased rapidly with increasing alkali content. In the cement slurry system, alkali promotes more hexavalent chromium leaching by influencing pH and other ion concentrations (Ca 2+ , SO 4 2− ). Therefore, the addition of alkali to either the raw meal or to the cement slurry system will favour an increase in the water-soluble Cr(VI) content. This study may provide theoretical guidance for the preparation and use of clinkers containing chromium.

Suggested Citation

  • Fan Shi & Dehong Jiang & Junrong Ji & Jinsheng Yan & Huxing Chen, 2022. "Effects of Alkali on Water Soluble Hexavalent Chromium in Ordinary Portland Cement," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:8:p:4811-:d:794671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/8/4811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/8/4811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adriana Estokova & Lenka Palascakova & Maria Kanuchova, 2018. "Study on Cr(VI) Leaching from Cement and Cement Composites," IJERPH, MDPI, vol. 15(4), pages 1-13, April.
    2. Marina Tumolo & Valeria Ancona & Domenico De Paola & Daniela Losacco & Claudia Campanale & Carmine Massarelli & Vito Felice Uricchio, 2020. "Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview," IJERPH, MDPI, vol. 17(15), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel Villabona-Ortíz & Candelaria Tejada-Tovar & Ángel Darío González-Delgado, 2023. "Statistical Modelling of Biosorptive Removal of Hexavalent Chromium Using Dry Raw Biomasses of Dioscorea rotundata , Elaeis guineensis , Manihot esculenta , Theobroma cacao and Zea mays," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    2. Linfeng Jin & Liyuan Chai & Weichun Yang & Haiying Wang & Liyuan Zhang, 2019. "Two-Dimensional Titanium Carbides (Ti 3 C 2 T x ) Functionalized by Poly(m-phenylenediamine) for Efficient Adsorption and Reduction of Hexavalent Chromium," IJERPH, MDPI, vol. 17(1), pages 1-13, December.
    3. Monica Laura Zlati & Lucian Puiu Georgescu & Catalina Iticescu & Romeo Victor Ionescu & Valentin Marian Antohi, 2022. "New Approach to Modelling the Impact of Heavy Metals on the European Union’s Water Resources," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    4. Caroline Orset, 2024. "Air, land, and water pollutants and public health expenditures: Empirical data from selected EU countries in the transport sector [Polluants atmosphériques, terrestres et aquatiques et dépenses de ," Post-Print hal-04521160, HAL.
    5. Muhammad Umar Hayyat & Rab Nawaz & Ali Irfan & Sami A. Al-Hussain & Mehlil Aziz & Zafar Siddiq & Sajjad Ahmad & Magdi E. A. Zaki, 2023. "Evaluating the Phytoremediation Potential of Eichhornia crassipes for the Removal of Cr and Li from Synthetic Polluted Water," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    6. Marina Tumolo & Angela Volpe & Natalia Leone & Pietro Cotugno & Domenico De Paola & Daniela Losacco & Vito Locaputo & Maria Concetta de Pinto & Vito Felice Uricchio & Valeria Ancona, 2022. "Enhanced Natural Attenuation of Groundwater Cr(VI) Pollution Using Electron Donors: Yeast Extract vs. Polyhydroxybutyrate," IJERPH, MDPI, vol. 19(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:8:p:4811-:d:794671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.