IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p4241-d785733.html
   My bibliography  Save this article

Safe-and-Sustainable-by-Design Framework Based on a Prospective Life Cycle Assessment: Lessons Learned from a Nano-Titanium Dioxide Case Study

Author

Listed:
  • Georgios Archimidis Tsalidis

    (Engineering Systems and Services Department, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands
    Department of Biotechnology, Applied Sciences Faculty, Delft University of Technology, 92629 HZ Delft, The Netherlands)

  • Lya G. Soeteman-Hernández

    (Netherlands National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands)

  • Cornelle W. Noorlander

    (Netherlands National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands)

  • Saeed Saedy

    (Chemical Engineering Department, Applied Sciences Faculty, Delft University of Technology, 2629 HZ Delft, The Netherlands)

  • J. Ruud van Ommen

    (Chemical Engineering Department, Applied Sciences Faculty, Delft University of Technology, 2629 HZ Delft, The Netherlands)

  • Martina G. Vijver

    (Institute of Environmental Sciences, Faculty of Science, Leiden University, 2333 CC Leiden, The Netherlands)

  • Gijsbert Korevaar

    (Engineering Systems and Services Department, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands)

Abstract

Safe-and-sustainable-by-design (SSbD) is a concept that takes a systems approach by integrating safety, sustainability, and functionality throughout a product’s the life cycle. This paper proposes a framework based on a prospective life cycle assessment for early safety and sustainability assessment. The framework’s purpose is to identify environmental sustainability and toxicity hotspots early in the innovation process for future SSbD applicability. If this is impossible, key performance indicators are assessed. Environmental sustainability aspects, such as global warming potential (GWP) and cumulative energy demand (CED), and toxicity aspects, such as human toxicity potential and freshwater ecotoxicity potential, were assessed upon applying the framework on a case study. The case study regarded using nano-titanium dioxide (P25-TiO 2 ) or a modified nano-coated version (Cu 2 O-coated/P25-TiO 2 ) as photocatalysts to produce hydrogen from water using sunlight. Although there was a decrease in environmental impact (GWP and CED), the modified nano-coated version had a relatively higher level of human toxicity and freshwater eco-toxicity. For the presented case study, SSbD alternatives need to be considered that improve the photocatalytic activity but are not toxic to the environment. This case study illustrates the importance of performing an early safety and environmental sustainability assessment to avoid the development of toxic alternatives.

Suggested Citation

  • Georgios Archimidis Tsalidis & Lya G. Soeteman-Hernández & Cornelle W. Noorlander & Saeed Saedy & J. Ruud van Ommen & Martina G. Vijver & Gijsbert Korevaar, 2022. "Safe-and-Sustainable-by-Design Framework Based on a Prospective Life Cycle Assessment: Lessons Learned from a Nano-Titanium Dioxide Case Study," IJERPH, MDPI, vol. 19(7), pages 1-16, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4241-:d:785733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/4241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/4241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mitchell K. van der Hulst & Mark A. J. Huijbregts & Niels van Loon & Mirjam Theelen & Lucinda Kootstra & Joseph D. Bergesen & Mara Hauck, 2020. "A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1234-1249, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    2. Sanna Wickerts & Rickard Arvidsson & Anders Nordelöf & Magdalena Svanström & Patrik Johansson, 2024. "Prospective life cycle assessment of sodium‐ion batteries made from abundant elements," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 116-129, February.
    3. Alessia Amato & Marianna Mastrovito & Alessandro Becci & Francesca Beolchini, 2021. "Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    4. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    5. Emma A. R. Zuiderveen & Koen J. J. Kuipers & Carla Caldeira & Steef V. Hanssen & Mitchell K. Hulst & Melinda M. J. Jonge & Anestis Vlysidis & Rosalie Zelm & Serenella Sala & Mark A. J. Huijbregts, 2023. "The potential of emerging bio-based products to reduce environmental impacts," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Steffi Weyand & Kotaro Kawajiri & Claudiu Mortan & Liselotte Schebek, 2023. "Scheme for generating upscaling scenarios of emerging functional materials based energy technologies in prospective LCA (UpFunMatLCA)," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 676-692, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4241-:d:785733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.