IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i6p3247-d767871.html
   My bibliography  Save this article

Enhanced Removal of Malachite Green Using Calcium-Functionalized Magnetic Biochar

Author

Listed:
  • Pengjie Wang

    (Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China)

  • Wei Chen

    (Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China)

  • Rui Zhang

    (Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China)

  • Yanfeng Xing

    (Heilongjiang Ecological Environment Monitoring Center, Harbin 150000, China)

Abstract

To efficiently remove malachite green (MG), a novel calcium-functionalized magnetic biochar (Ca/MBC) was fabricated via a two-step pyrolysis method. Iron-containing oxides endowed the target complexes with magnetic properties, especially the chemotactic binding ability with MG, and the addition of calcium significantly changed the morphology of the material and improved its adsorption performance, especially the chemotactic binding ability with MG, which could be confirmed through FTIR, XPS, and adsorption experiments. Electrostatic adsorption, ligand exchange, and hydrogen bonding acted as essential drivers for an enhanced adsorption process, and the maximum theoretical adsorption capacity was up to 12,187.57 mg/g. Ca/MBC maintained a higher adsorption capacity at pH = 4–12, and after five adsorption–desorption cycles, the adsorption capacity and adsorption rate of MG remained at 1424.2 mg/g and 71.21%, highlighting the advantages of Ca/MBC on adsorbing MG. This study suggests that biochar can be modified by a green synthesis approach to produce calcium-functionalized magnetic biochar with excellent MG removal capacity. The synthetic material can not only remove pollutants from water but also provide an efficient way for soil remediation.

Suggested Citation

  • Pengjie Wang & Wei Chen & Rui Zhang & Yanfeng Xing, 2022. "Enhanced Removal of Malachite Green Using Calcium-Functionalized Magnetic Biochar," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3247-:d:767871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/6/3247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/6/3247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Suriati Sufian & Ahmer Ali Siyal & Muhammad Zulfiqar & Muhammad Roil Bilad & Arvind Vagananthan & Amin Al-Fakih & Aiban Abdulhakim Saeed Ghaleb & Najib , 2020. "Eucheuma cottonii Seaweed-Based Biochar for Adsorption of Methylene Blue Dye," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinnan Bai & Rui Huang & Shu Li & Xianliang Li & Qijun Fan & Shengqiu Liu & Lening Hu, 2024. "Potential of Calcium-Modified Biochar for Soil Nutrient and Carbon Sequestration in Citrus Orchards," Agriculture, MDPI, vol. 14(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Suriati Sufian & Muhammad Roil Bilad & Zaki Yamani Zakaria & Ahmad Hussaini Jagaba & Aiban Abdulhakim Saeed Ghaleb & Haetham G. Mohammed, 2021. "Pristine and Magnetic Kenaf Fiber Biochar for Cd 2+ Adsorption from Aqueous Solution," IJERPH, MDPI, vol. 18(15), pages 1-20, July.
    2. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    3. Najib Mohammed Yahya Al-Mahbashi & Shamsul Rahman Mohamed Kutty & Muhammad Roil Bilad & Nurul Huda & Rovina Kobun & Azmatullah Noor & Ahmad Hussaini Jagaba & Ahmed Al-Nini & Aiban Abdulhakim Saeed Gha, 2022. "Bench-Scale Fixed-Bed Column Study for the Removal of Dye-Contaminated Effluent Using Sewage-Sludge-Based Biochar," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    4. Marcelo Teixeira Carneiro & Alan Ícaro Sousa Morais & André Luiz Ferreira de Carvalho Melo & Francisco José Lustosa Ferreira & Francisco Eroni Paz Santos & Bartolomeu Cruz Viana & Josy Anteveli Osajim, 2023. "Biochar Derived from Water Hyacinth Biomass Chemically Activated for Dye Removal in Aqueous Solution," Sustainability, MDPI, vol. 15(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3247-:d:767871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.