IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i4p2349-d752473.html
   My bibliography  Save this article

Early Prediction of Sepsis Onset Using Neural Architecture Search Based on Genetic Algorithms

Author

Listed:
  • Jae Kwan Kim

    (Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Korea
    School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea)

  • Wonbin Ahn

    (Applied AI Research Lab, LG AI Research, Seoul 07796, Korea)

  • Sangin Park

    (Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Korea)

  • Soo-Hong Lee

    (School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea)

  • Laehyun Kim

    (Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Korea
    Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Korea)

Abstract

Sepsis is a life-threatening condition with a high mortality rate. Early prediction and treatment are the most effective strategies for increasing survival rates. This paper proposes a neural architecture search (NAS) model to predict the onset of sepsis with a low computational cost and high search performance by applying a genetic algorithm (GA). The proposed model shares the weights of all possible connection nodes internally within the neural network. Externally, the search cost is reduced through the weight-sharing effect between the genotypes of the GA. A predictive analysis was performed using the Medical Information Mart for Intensive Care III (MIMIC-III), a medical time-series dataset, with the primary objective of predicting sepsis onset 3 h before occurrence. In addition, experiments were conducted under various prediction times (0–12 h) for comparison. The proposed model exhibited an area under the receiver operating characteristic curve (AUROC) score of 0.94 (95% CI: 0.92–0.96) for 3 h, which is 0.31–0.26 higher than the scores obtained using the Sequential Organ Failure Assessment (SOFA), quick SOFA (qSOFA), and Simplified Acute Physiology Score (SAPS) II scoring systems. Furthermore, the proposed model exhibited a 12% improvement in the AUROC value over a simple model based on the long short-term memory neural network. Additionally, it is not only optimally searchable for sepsis onset prediction, but also outperforms conventional models that use similar predictive purposes and datasets. Notably, it is sufficiently robust to shape changes in the input data and has less structural dependence.

Suggested Citation

  • Jae Kwan Kim & Wonbin Ahn & Sangin Park & Soo-Hong Lee & Laehyun Kim, 2022. "Early Prediction of Sepsis Onset Using Neural Architecture Search Based on Genetic Algorithms," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2349-:d:752473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/4/2349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/4/2349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Liu & Peijun Zheng & Ziyu Chen, 2019. "Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 12(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Jose R. Cedeño González & Juan J. Flores & Claudio R. Fuerte-Esquivel & Boris A. Moreno-Alcaide, 2020. "Nearest Neighbors Time Series Forecaster Based on Phase Space Reconstruction for Short-Term Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-24, October.
    3. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    4. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    5. Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
    6. Li, Tong & Wang, Zhaohua & Zhao, Wenhui, 2022. "Comparison and application potential analysis of autoencoder-based electricity pattern mining algorithms for large-scale demand response," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    7. Xiongchao Lin & Wenshuai Xi & Jinze Dai & Caihong Wang & Yonggang Wang, 2020. "Prediction of Slag Characteristics Based on Artificial Neural Network for Molten Gasification of Hazardous Wastes," Energies, MDPI, vol. 13(19), pages 1-18, October.
    8. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    9. Zihao Wang & Kun Li & Steve Q. Xia & Hongfu Liu, 2021. "Economic Recession Prediction Using Deep Neural Network," Papers 2107.10980, arXiv.org.
    10. Yi Yang & Zhihao Shang & Yao Chen & Yanhua Chen, 2020. "Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting," Energies, MDPI, vol. 13(3), pages 1-19, January.
    11. Tomasz Ciechulski & Stanisław Osowski, 2020. "Deep Learning Approach to Power Demand Forecasting in Polish Power System," Energies, MDPI, vol. 13(22), pages 1-13, November.
    12. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    13. Dengyong Zhang & Haixin Tong & Feng Li & Lingyun Xiang & Xiangling Ding, 2020. "An Ultra-Short-Term Electrical Load Forecasting Method Based on Temperature-Factor-Weight and LSTM Model," Energies, MDPI, vol. 13(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2349-:d:752473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.