Multi-Regional Modeling of Cumulative COVID-19 Cases Integrated with Environmental Forest Knowledge Estimation: A Deep Learning Ensemble Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- J. -P. Vandamme & N. Meskens & J. -F. Superby, 2007. "Predicting Academic Performance by Data Mining Methods," Education Economics, Taylor & Francis Journals, vol. 15(4), pages 405-419.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mustafa Mohamed & Fahriye Altinay & Zehra Altinay & Gokmen Dagli & Mehmet Altinay & Mutlu Soykurt, 2023. "Validation of Instruments for the Improvement of Interprofessional Education through Educational Management: An Internet of Things (IoT)-Based Machine Learning Approach," Sustainability, MDPI, vol. 15(24), pages 1-21, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cindi Mason & Janet Twomey & David Wright & Lawrence Whitman, 2018. "Predicting Engineering Student Attrition Risk Using a Probabilistic Neural Network and Comparing Results with a Backpropagation Neural Network and Logistic Regression," Research in Higher Education, Springer;Association for Institutional Research, vol. 59(3), pages 382-400, May.
- Annalina Sarra & Lara Fontanella & Simone Zio, 2019. "Identifying Students at Risk of Academic Failure Within the Educational Data Mining Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 41-60, November.
- Behr Andreas & Giese Marco & Teguim K Herve D. & Theune Katja, 2020. "Early Prediction of University Dropouts – A Random Forest Approach," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 240(6), pages 743-789, December.
- Iván Sandoval-Palis & David Naranjo & Jack Vidal & Raquel Gilar-Corbi, 2020. "Early Dropout Prediction Model: A Case Study of University Leveling Course Students," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
- Rupert G. Rhodd & Sandra M. Schrouder & Marcus T. Allen, 2009. "Does the Performance on Principles of Economics Courses Affect the Overall Academic Success of Undergraduate Business Majors?," International Review of Economic Education, Economics Network, University of Bristol, vol. 8(1), pages 48-63.
- Murat Gunduz & Hamza M. A. Lutfi, 2021. "Go/No-Go Decision Model for Owners Using Exhaustive CHAID and QUEST Decision Tree Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
More about this item
Keywords
artificial intelligence; ARIMA; ensemble ARIMA; forest knowledge; prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:2:p:738-:d:721409. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.