IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p16191-d992550.html
   My bibliography  Save this article

Zoning Optimization Method of a Riverfront Greenspace Service Function Oriented to the Cooling Effect: A Case Study in Shanghai

Author

Listed:
  • Yunfang Jiang

    (School of Urban and Regional Science, East China Normal University, Shanghai 200241, China
    The Center for Modern Chinese City Studies, East China Normal University, Shanghai 200241, China
    Future City Lab, East China Normal University, Shanghai 200241, China)

  • Xiaolin Li

    (School of Urban and Regional Science, East China Normal University, Shanghai 200241, China
    Future City Lab, East China Normal University, Shanghai 200241, China)

  • Jing Huang

    (Shenzhen Overseas Chinese Town Middle School, Shenzhen 518053, China)

Abstract

Blue-green space commonly provides multiple ecological service functions, especially thermal environment comfort for citizens. The greenspace of the riparian buffers along 22 river channels in Shanghai was selected as the study object, and remote sensing and GIS technologies were used to obtain the quantitative composition and morphological indices of riverfront greenspace and the spatial distribution data of the land surface temperature in the study area. Through BRT modelling and statistical analyses, the interactive correlations among the three aspects, namely, the spatial patterns of riverfront greenspace, their specific functional zoning, and cooling island differentiation characteristics, were explored. The results showed that different river types served for different functional zones of the city, namely, high-density built-up zoning, new urban-growth zoning in built-up areas, suburban areas, and rural areas, and had specific regular patterns of morphosis and service function of riverfront greenspace. These also led to a significant spatial differentiation pattern of cooling intensity levels, which generally appeared in the approximate circle differentiation structure of the cooling island in the city riverfront area. The study further proposed the key factors and corresponding strategies for optimizing the greenspace pattern to strengthen the cooling intensity levels of different river types. This study summarizes the landscape composition paradigm of riverfront greenspaces at the urban mesoscale and provides adaptive planning methods for better local microclimate conditions.

Suggested Citation

  • Yunfang Jiang & Xiaolin Li & Jing Huang, 2022. "Zoning Optimization Method of a Riverfront Greenspace Service Function Oriented to the Cooling Effect: A Case Study in Shanghai," IJERPH, MDPI, vol. 19(23), pages 1-32, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16191-:d:992550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/16191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/16191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunfang Jiang & Jing Huang & Tiemao Shi & Hongxiang Wang, 2021. "Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis," IJERPH, MDPI, vol. 18(21), pages 1-29, October.
    2. Yunfang Jiang & Danran Song & Tiemao Shi & Xuemei Han, 2018. "Adaptive Analysis of Green Space Network Planning for the Cooling Effect of Residential Blocks in Summer: A Case Study in Shanghai," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    3. Yunfang Jiang & Jing Huang & Tiemao Shi & Xiaolin Li, 2021. "Cooling Island Effect of Blue-Green Corridors: Quantitative Comparison of Morphological Impacts," IJERPH, MDPI, vol. 18(22), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ningcheng Gao & Hui Zhang & Pei Wang & Ling Ning & Nyuk Hien Wong & Haibo Yu & Zikang Ke, 2023. "Research on Microclimate-Suitable Spatial Patterns of Waterfront Settlements in Summer: A Case Study of the Nan Lake Area in Wuhan, China," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    2. Yunfang Jiang & Jing Huang & Tiemao Shi & Xiaolin Li, 2021. "Cooling Island Effect of Blue-Green Corridors: Quantitative Comparison of Morphological Impacts," IJERPH, MDPI, vol. 18(22), pages 1-28, November.
    3. Haiying Gong & Yongqiang Cao & Jiaqi Yao & Nan Xu & Huanyu Chang & Shuqi Wu & Liuru Hu & Zihua Liu & Tong Liu & Zihao Zhang, 2024. "Factors Influencing Spatiotemporal Changes in the Urban Blue-Green Space Cooling Effect in Beijing–Tianjin–Hebei Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(9), pages 1-16, September.
    4. Xiaojia Liu & Xi Chen & Yan Huang & Weihong Wang & Mingkan Zhang & Yang Jin, 2023. "Landscape Aesthetic Value of Waterfront Green Space Based on Space–Psychology–Behavior Dimension: A Case Study along Qiantang River (Hangzhou Section)," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    5. Juraj Illes & Katarina Kristianova & Viera Joklova & Aida Shayegani, 2024. "Potential of Former Mill Race Corridors for Urban Regeneration Strategies—A Case Study from Podolínec in Prešov Region (Slovakia)," Land, MDPI, vol. 13(7), pages 1-19, July.
    6. Qian Dong & Qiuliang Zhang, 2022. "The Estimation of a Remote Sensing Model of Three-Dimensional Green Space Quantity and Research into Its Cooling Effect in Hohhot, China," Land, MDPI, vol. 11(9), pages 1-21, August.
    7. Lihua Chen & Yuan Ma, 2023. "How Do Ecological and Recreational Features of Waterfront Space Affect Its Vitality? Developing Coupling Coordination and Enhancing Waterfront Vitality," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    8. Yunfang Jiang & Shidan Jiang & Tiemao Shi, 2020. "Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
    9. Sudeshna Haldar & Priyanka Dey, 2024. "Towards UHI mitigation adopting park cooling effect: Two- decade literature review for a theoretical framework," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(8), pages 1-25, December.
    10. Simon Stork & Bernd Pölling & Wolf Lorleberg & Rolf Morgenstern & Jan-Henning Feil, 2023. "Clustering Business Models of Heterogeneous Nature-Based Solutions Implementing Innovative Governance and Financing Concepts," Land, MDPI, vol. 12(12), pages 1-22, November.
    11. Maryam Norouzi & Hing-Wah Chau & Elmira Jamei, 2024. "Design and Site-Related Factors Impacting the Cooling Performance of Urban Parks in Different Climate Zones: A Systematic Review," Land, MDPI, vol. 13(12), pages 1-42, December.
    12. Yanxia Hu & Changqing Wang & Jingjing Li, 2023. "Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China," Land, MDPI, vol. 12(5), pages 1-21, April.
    13. Jingming Qian & Shujiang Miao & Nigel Tapper & Jianguang Xie & Greg Ingleton, 2020. "Investigation on Airport Landscape Cooling Associated with Irrigation: A Case Study of Adelaide Airport, Australia," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    14. Jianping Zhang & Gengying Jiao & Qing Ye & Xinren Gu, 2022. "The Impact of Urban Expansion on the Urban Thermal Environment: A Case Study in Nanchang, Jiangxi, China," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    15. Ziyi Liu & Xinyao Ma & Lihui Hu & Yong Liu & Shan Lu & Huilin Chen & Zhe Tan, 2022. "Nonlinear Cooling Effect of Street Green Space Morphology: Evidence from a Gradient Boosting Decision Tree and Explainable Machine Learning Approach," Land, MDPI, vol. 11(12), pages 1-23, December.
    16. Songxin Zheng & Lichen Liu & Xiaofeng Dong & Yanqing Hu & Pengpeng Niu, 2022. "Dominance of Influencing Factors on Cooling Effect of Urban Parks in Different Climatic Regions," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    17. Yunfang Jiang & Jing Huang & Tiemao Shi & Hongxiang Wang, 2021. "Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis," IJERPH, MDPI, vol. 18(21), pages 1-29, October.
    18. Ya Hui Teo & Mohamed Akbar Bin Humayun Makani & Weimeng Wang & Linglan Liu & Jun Hong Yap & Kang Hao Cheong, 2022. "Urban Heat Island Mitigation: GIS-Based Analysis for a Tropical City Singapore," IJERPH, MDPI, vol. 19(19), pages 1-23, September.
    19. Lucie Havránková & Přemysl Štych & Pavel Ondr & Jana Moravcová & Jiří Sláma, 2023. "Assessment of the Connectivity and Comfort of Urban Rivers, a Case Study of the Czech Republic," Land, MDPI, vol. 12(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16191-:d:992550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.