IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p703-713.html
   My bibliography  Save this article

Modeling the causal effect of treatment initiation time on survival: Application to HIV/TB co†infection

Author

Listed:
  • Liangyuan Hu
  • Joseph W. Hogan
  • Ann W. Mwangi
  • Abraham Siika

Abstract

The timing of antiretroviral therapy (ART) initiation for HIV and tuberculosis (TB) co†infected patients needs to be considered carefully. CD4 cell count can be used to guide decision making about when to initiate ART. Evidence from recent randomized trials and observational studies generally supports early initiation but does not provide information about effects of initiation time on a continuous scale. In this article, we develop and apply a highly flexible structural proportional hazards model for characterizing the effect of treatment initiation time on a survival distribution. The model can be fitted using a weighted partial likelihood score function. Construction of both the score function and the weights must accommodate censoring of the treatment initiation time, the outcome, or both. The methods are applied to data on 4903 individuals with HIV/TB co†infection, derived from electronic health records in a large HIV care program in Kenya. We use a model formulation that flexibly captures the joint effects of ART initiation time and ART duration using natural cubic splines. The model is used to generate survival curves corresponding to specific treatment initiation times; and to identify optimal times for ART initiation for subgroups defined by CD4 count at time of TB diagnosis. Our findings potentially provide ‘higher resolution’ information about the relationship between ART timing and mortality, and about the differential effect of ART timing within CD4 subgroups.

Suggested Citation

  • Liangyuan Hu & Joseph W. Hogan & Ann W. Mwangi & Abraham Siika, 2018. "Modeling the causal effect of treatment initiation time on survival: Application to HIV/TB co†infection," Biometrics, The International Biometric Society, vol. 74(2), pages 703-713, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:703-713
    DOI: 10.1111/biom.12780
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12780
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongling Xiao & Michal Abrahamowicz & Erica E. M. Moodie & Rainer Weber & James Young, 2014. "Flexible Marginal Structural Models for Estimating the Cumulative Effect of a Time-Dependent Treatment on the Hazard: Reassessing the Cardiovascular Risks of Didanosine Treatment in the Swiss HIV Coho," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 455-464, June.
    2. Brent A. Johnson & Anastasios A. Tsiatis, 2005. "Semiparametric inference in observational duration-response studies, with duration possibly right-censored," Biometrika, Biometrika Trust, vol. 92(3), pages 605-618, September.
    3. Brent A. Johnson & Anastasios A. Tsiatis, 2004. "Estimating Mean Response as a Function of Treatment Duration in an Observational Study, Where Duration May Be Informatively Censored," Biometrics, The International Biometric Society, vol. 60(2), pages 315-323, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Sun & Ashkan Ertefaie & Brent A. Johnson, 2022. "Estimating mean potential outcome under adaptive treatment length strategies in continuous time," Biometrics, The International Biometric Society, vol. 78(4), pages 1503-1514, December.
    2. Xiaofei Chen & Daniel F. Heitjan & Gerald Greil & Haekyung Jeon‐Slaughter, 2021. "Estimating the optimal timing of surgery from observational data," Biometrics, The International Biometric Society, vol. 77(2), pages 729-739, June.
    3. Xin Chen & Rui Song & Jiajia Zhang & Swann Arp Adams & Liuquan Sun & Wenbin Lu, 2022. "On estimating optimal regime for treatment initiation time based on restricted mean residual lifetime," Biometrics, The International Biometric Society, vol. 78(4), pages 1377-1389, December.
    4. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brent A. Johnson & Heather Ribaudo & Roy M. Gulick & Joseph J. Eron Jr., 2013. "Modeling Clinical Endpoints as a Function of Time of Switch to Second-Line ART with Incomplete Data on Switching Times," Biometrics, The International Biometric Society, vol. 69(3), pages 732-740, September.
    2. Xin Lu & Brent A. Johnson, 2017. "Direct estimation for adaptive treatment length policies: Methods and application to evaluating the effect of delayed PEG insertion," Biometrics, The International Biometric Society, vol. 73(3), pages 981-989, September.
    3. Shu Yang & Anastasios A. Tsiatis & Michael Blazing, 2018. "Modeling survival distribution as a function of time to treatment discontinuation: A dynamic treatment regime approach," Biometrics, The International Biometric Society, vol. 74(3), pages 900-909, September.
    4. Andrew J. Spieker & Emily M. Ko & Jason A. Roy & Nandita Mitra, 2020. "Nested g‐computation: a causal approach to analysis of censored medical costs in the presence of time‐varying treatment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1189-1208, November.
    5. Hao Sun & Ashkan Ertefaie & Brent A. Johnson, 2022. "Estimating mean potential outcome under adaptive treatment length strategies in continuous time," Biometrics, The International Biometric Society, vol. 78(4), pages 1503-1514, December.
    6. Xiaofei Chen & Daniel F. Heitjan & Gerald Greil & Haekyung Jeon‐Slaughter, 2021. "Estimating the optimal timing of surgery from observational data," Biometrics, The International Biometric Society, vol. 77(2), pages 729-739, June.
    7. Mélanie Prague & Daniel Commenges & Jon Michael Gran & Bruno Ledergerber & Jim Young & Hansjakob Furrer & Rodolphe Thiébaut, 2017. "Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 73(1), pages 294-304, March.
    8. Johnson, Brent A. & Boos, Dennis D., 2005. "A note on the use of kernel functions in weighted estimators," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 345-355, May.
    9. Anastasios A. Tsiatis & Marie Davidian, 2005. "Discussion on "Statistical Issues Arising in the Women's Health Initiative"," Biometrics, The International Biometric Society, vol. 61(4), pages 933-935, December.
    10. Bo Lu & Zhenchao Qian & Anna Cunningham & Chih-Lin Li, 2012. "Estimating the Effect of Premarital Cohabitation on Timing of Marital Disruption," Sociological Methods & Research, , vol. 41(3), pages 440-466, August.
    11. Sun Hao & Ertefaie Ashkan & Lu Xin & Johnson Brent A., 2020. "Improved Doubly Robust Estimation in Marginal Mean Models for Dynamic Regimes," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 300-314, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:703-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.