IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p14965-d971801.html
   My bibliography  Save this article

Co-Benefits of Energy Structure Transformation and Pollution Control for Air Quality and Public Health until 2050 in Guangdong, China

Author

Listed:
  • Haihua Mo

    (Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China)

  • Kejun Jiang

    (Energy Research Institute, National Development and Reform Commission, Beijing 100038, China)

  • Peng Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Min Shao

    (Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China)

  • Xuemei Wang

    (Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China)

Abstract

In order to mitigate global warming and improve air quality, the transformation of regional energy structures is the most important development pathway. China, as a major global consumer of fossil fuels, will face great pressure in this regard. Aiming toward achieving the global 2 °C warming target in China, this study takes one of the most developed regions of China, Guangdong Province, as the research area in order to explore a future development pathway and potential air quality attainment until 2050, by developing two energy structure scenarios (BAU_Energy and 2Deg_Energy) and three end-of-pipe scenarios (NFC, CLE, and MTFR), and simulating future air quality and related health impacts for the different scenarios using the WRF-Chem model. The results show that under the energy transformation scenario, total energy consumption in Guangdong rises from 296 Mtce (million tons of coal equivalent) in 2015 to 329 Mtce in 2050, with electricity and clean energy accounting for 45% and 35%. In 2050, the transformation of the energy structure leads to 64%, 75%, and 46% reductions in the emissions of CO 2 , NOx, and SO 2 compared with those in 2015. Together with the most stringent end-of-pipe control measures, the emissions of VOCs and primary PM 2.5 are effectively reduced by 66% and 78%. The annual average PM 2.5 and MDA8 (daily maximum 8 h O 3 ) concentrations in Guangdong are 33.8 and 85.9 μg/m 3 in 2015, with 63.4 thousand premature deaths (95% CI: 57.1–70.8) due to environmental exposure. Under the baseline scenario, no improvement is gained in air quality or public health by 2050. In contrast, the PM 2.5 and MDA8 concentrations decline to 21.7 and 75.5 μg/m 3 under the scenario with energy structure transformation, and total premature deaths are reduced to 35.5 thousand (31.9–39.5). When further combined with the most stringent end-of-pipe control measures, the PM 2.5 concentrations decrease to 16.5 μg/m 3 , but there is no significant improvement for ozone, with premature deaths declining to 20.6 thousand (18.5–23.0). This study demonstrates that the transformation of energy structure toward climate goals could be effective in mitigating air pollution in Guangdong and would bring significant health benefits. Compared with the end-of-pipe control policies, transformation of the energy structure is a more effective way to improve regional air quality in the long term, and synergistic promotion of both is crucial for regional development.

Suggested Citation

  • Haihua Mo & Kejun Jiang & Peng Wang & Min Shao & Xuemei Wang, 2022. "Co-Benefits of Energy Structure Transformation and Pollution Control for Air Quality and Public Health until 2050 in Guangdong, China," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14965-:d:971801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/14965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/14965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng, Wei & Yang, Junnan & Lu, Xi & Mauzerall, Denise L., 2018. "Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China," Applied Energy, Elsevier, vol. 218(C), pages 511-519.
    2. Qiang Zhang & Xujia Jiang & Dan Tong & Steven J. Davis & Hongyan Zhao & Guannan Geng & Tong Feng & Bo Zheng & Zifeng Lu & David G. Streets & Ruijing Ni & Michael Brauer & Aaron van Donkelaar & Randall, 2017. "Transboundary health impacts of transported global air pollution and international trade," Nature, Nature, vol. 543(7647), pages 705-709, March.
    3. Dong, Huijuan & Dai, Hancheng & Dong, Liang & Fujita, Tsuyoshi & Geng, Yong & Klimont, Zbigniew & Inoue, Tsuyoshi & Bunya, Shintaro & Fujii, Minoru & Masui, Toshihiko, 2015. "Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis," Applied Energy, Elsevier, vol. 144(C), pages 165-174.
    4. Wang, Ke & Wang, Shanshan & Liu, Lei & Yue, Hui & Zhang, Ruiqin & Tang, Xiaoyan, 2016. "Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China," Applied Energy, Elsevier, vol. 184(C), pages 810-819.
    5. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengcheng Lv & Haoyu Zhang & Xiaodong Li, 2023. "Spatio-Temporal Distribution Characteristics and Drivers of PM 2.5 Pollution in Henan Province, Central China, before and during the COVID-19 Epidemic," IJERPH, MDPI, vol. 20(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Chaoji & Cui, XueQin & Cai, Wenjia & Wang, Can & Xing, Lu & Zhang, Ning & Shen, Shudong & Bai, Yuqi & Deng, Zhu, 2019. "Incorporating health co-benefits into regional carbon emission reduction policy making: A case study of China’s power sector," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
    3. Zhu, Junpeng & Wu, Shaohui & Xu, Junbing, 2023. "Synergy between pollution control and carbon reduction: China's evidence," Energy Economics, Elsevier, vol. 119(C).
    4. Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
    5. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    6. Yongsheng Lin & Zhe Liu & Rui Liu & Xiaoman Yu & Liming Zhang, 2020. "Uncovering driving forces of co-benefits achieved by eco-industrial development strategies at the scale of industrial park," Energy & Environment, , vol. 31(2), pages 275-290, March.
    7. Zhao, Hongyan & Zhang, Qiang & Huo, Hong & Lin, Jintai & Liu, Zhu & Wang, Haikun & Guan, Dabo & He, Kebin, 2016. "Environment-economy tradeoff for Beijing–Tianjin–Hebei’s exports," Applied Energy, Elsevier, vol. 184(C), pages 926-935.
    8. Zhongyao Cai & Xiaohui Yang & Huaxing Lin & Xinyu Yang & Ping Jiang, 2022. "Study on the Co-Benefits of Air Pollution Control and Carbon Reduction in the Yellow River Basin: An Assessment Based on a Spatial Econometric Model," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    9. Haoqi, Qian & Libo, Wu & Weiqi, Tang, 2017. "“Lock-in” effect of emission standard and its impact on the choice of market based instruments," Energy Economics, Elsevier, vol. 63(C), pages 41-50.
    10. Wang, Lining & Patel, Pralit L. & Yu, Sha & Liu, Bo & McLeod, Jeff & Clarke, Leon E. & Chen, Wenying, 2016. "Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China," Applied Energy, Elsevier, vol. 163(C), pages 244-253.
    11. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.
    12. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    13. Peng, Wei & Yang, Junnan & Lu, Xi & Mauzerall, Denise L., 2018. "Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China," Applied Energy, Elsevier, vol. 218(C), pages 511-519.
    14. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Ren, Jingzheng & Chen, Qinghua & Liu, Weili & Zhu, Xuesong, 2018. "Co-benefits accounting for the implementation of eco-industrial development strategies in the scale of industrial park based on emergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1522-1529.
    15. Meng, Jing & Liu, Junfeng & Guo, Shan & Huang, Ye & Tao, Shu, 2016. "The impact of domestic and foreign trade on energy-related PM emissions in Beijing," Applied Energy, Elsevier, vol. 184(C), pages 853-862.
    16. Hui Li & Xianchun Tan & Jianxin Guo & Kaiwei Zhu & Chen Huang, 2019. "Study on an Implementation Scheme of Synergistic Emission Reduction of CO 2 and Air Pollutants in China’s Steel Industry," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    17. Liu, Yating & Fang, Delin & Chen, Bin, 2021. "Interregional spillover effect of PM2.5 emissions on Northeast China through the national supply chain," Applied Energy, Elsevier, vol. 303(C).
    18. Zhang, Jiawei & Liu, Miaomiao & Bi, Jun, 2022. "Urban greenhouse gas emission peaking paths and embedded health co-benefits: A multicases comparison study in China," Applied Energy, Elsevier, vol. 311(C).
    19. Chang, Shiyan & Yang, Xi & Zheng, Haotian & Wang, Shuxiao & Zhang, Xiliang, 2020. "Air quality and health co-benefits of China's national emission trading system," Applied Energy, Elsevier, vol. 261(C).
    20. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14965-:d:971801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.