Uncovering driving forces of co-benefits achieved by eco-industrial development strategies at the scale of industrial park
Author
Abstract
Suggested Citation
DOI: 10.1177/0958305X19857908
Download full text from publisher
References listed on IDEAS
- Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
- Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
- Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
- Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
- Dhar, Subash & Shukla, Priyadarshi R., 2015. "Low carbon scenarios for transport in India: Co-benefits analysis," Energy Policy, Elsevier, vol. 81(C), pages 186-198.
- J. Jason West & Steven J. Smith & Raquel A. Silva & Vaishali Naik & Yuqiang Zhang & Zachariah Adelman & Meridith M. Fry & Susan Anenberg & Larry W. Horowitz & Jean-Francois Lamarque, 2013. "Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health," Nature Climate Change, Nature, vol. 3(10), pages 885-889, October.
- Dong, Liang & Fujita, Tsuyoshi & Zhang, Hui & Dai, Ming & Fujii, Minoru & Ohnishi, Satoshi & Geng, Yong & Liu, Zhu, 2013. "Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model," Energy Policy, Elsevier, vol. 61(C), pages 864-873.
- Dong, Huijuan & Dai, Hancheng & Dong, Liang & Fujita, Tsuyoshi & Geng, Yong & Klimont, Zbigniew & Inoue, Tsuyoshi & Bunya, Shintaro & Fujii, Minoru & Masui, Toshihiko, 2015. "Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis," Applied Energy, Elsevier, vol. 144(C), pages 165-174.
- Mrkajic, Vladimir & Vukelic, Djordje & Mihajlov, Andjelka, 2015. "Reduction of CO2 emission and non-environmental co-benefits of bicycle infrastructure provision: the case of the University of Novi Sad, Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 232-242.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Ren, Jingzheng & Chen, Qinghua & Liu, Weili & Zhu, Xuesong, 2018. "Co-benefits accounting for the implementation of eco-industrial development strategies in the scale of industrial park based on emergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1522-1529.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
- Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
- Hui Li & Xianchun Tan & Jianxin Guo & Kaiwei Zhu & Chen Huang, 2019. "Study on an Implementation Scheme of Synergistic Emission Reduction of CO 2 and Air Pollutants in China’s Steel Industry," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
- Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
- Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
- Zhao, Hongyan & Zhang, Qiang & Huo, Hong & Lin, Jintai & Liu, Zhu & Wang, Haikun & Guan, Dabo & He, Kebin, 2016. "Environment-economy tradeoff for Beijing–Tianjin–Hebei’s exports," Applied Energy, Elsevier, vol. 184(C), pages 926-935.
- Cao, Chaoji & Cui, XueQin & Cai, Wenjia & Wang, Can & Xing, Lu & Zhang, Ning & Shen, Shudong & Bai, Yuqi & Deng, Zhu, 2019. "Incorporating health co-benefits into regional carbon emission reduction policy making: A case study of China’s power sector," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, Lining & Patel, Pralit L. & Yu, Sha & Liu, Bo & McLeod, Jeff & Clarke, Leon E. & Chen, Wenying, 2016. "Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China," Applied Energy, Elsevier, vol. 163(C), pages 244-253.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.
- Peng, Wei & Yang, Junnan & Lu, Xi & Mauzerall, Denise L., 2018. "Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China," Applied Energy, Elsevier, vol. 218(C), pages 511-519.
- Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
- Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
- Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
- Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
- Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
- Changhao Liu & Raymond Côté, 2017. "A Framework for Integrating Ecosystem Services into China’s Circular Economy: The Case of Eco-Industrial Parks," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
- Zhongyao Cai & Xiaohui Yang & Huaxing Lin & Xinyu Yang & Ping Jiang, 2022. "Study on the Co-Benefits of Air Pollution Control and Carbon Reduction in the Yellow River Basin: An Assessment Based on a Spatial Econometric Model," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
- Haoqi, Qian & Libo, Wu & Weiqi, Tang, 2017.
"“Lock-in” effect of emission standard and its impact on the choice of market based instruments,"
Energy Economics, Elsevier, vol. 63(C), pages 41-50.
- Qian, Haoqi & Wu, Libo & Tang, Weiqi, 2016. "“Lock-in” Effect of Emission Standard and Its Impact on the Choice of Market Based Instruments," MPRA Paper 72470, University Library of Munich, Germany.
- Wei, Xinyang & Tong, Qing & Magill, Iain & Vithayasrichareon, Peerapat & Betz, Regina, 2020. "Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China's electricity sector," Energy Economics, Elsevier, vol. 92(C).
More about this item
Keywords
Co-benefits; driving forces; eco-industrial development-based strategies; industrial park;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:31:y:2020:i:2:p:275-290. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.