IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14602-d965455.html
   My bibliography  Save this article

The Effects of Paroxetine on Benthic Microbial Food Web and Nitrogen Transformation in River Sediments

Author

Listed:
  • Yi Li

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China)

  • Xinqi Chen

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
    Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210013, China)

  • Xinzi Wang

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China)

  • Jiahui Shang

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China)

  • Lihua Niu

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China)

  • Longfei Wang

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China)

  • Huanjun Zhang

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China)

  • Wenlong Zhang

    (Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China)

Abstract

Paroxetine is a common pharmaceutical to treat depression and has been found to pose threats to aquatic organisms. However, little is known about the effects of paroxetine on the nutrient cycle in aquatic environments. Therefore, DNA metabarcoding is used in this study to analyze the effects of paroxetine on multi-trophic microorganisms and nitrogen transformation in river sediments. Although paroxetine has no significant effect on the diversity of microbenthos, changes in benthic nitrogen-converting bacteria are consistent with the change in the various forms of nitrogen in the sediment, indicating that paroxetine affects the nitrogen conversion process by affecting nitrogen-converting bacteria. In addition, it is found that paroxetine has the ability to influence nitrogen transformation in an indirect way by affecting the trophic transfer efficiency of higher trophic levels (meiofauna and protozoa, protozoa and protozoa), subsequently affecting the growth of nitrogen-converting bacteria through a top-down mechanism (i.e., predation).The results show that paroxetine affects nitrogen transformation directly by affecting nitrogen-converting bacteria and indirectly through top-down effects, emphasizing that the assessment of paroxetine’s ecological risks should consider species within different trophic levels.

Suggested Citation

  • Yi Li & Xinqi Chen & Xinzi Wang & Jiahui Shang & Lihua Niu & Longfei Wang & Huanjun Zhang & Wenlong Zhang, 2022. "The Effects of Paroxetine on Benthic Microbial Food Web and Nitrogen Transformation in River Sediments," IJERPH, MDPI, vol. 19(21), pages 1-14, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14602-:d:965455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holger Daims & Elena V. Lebedeva & Petra Pjevac & Ping Han & Craig Herbold & Mads Albertsen & Nico Jehmlich & Marton Palatinszky & Julia Vierheilig & Alexandr Bulaev & Rasmus H. Kirkegaard & Martin vo, 2015. "Complete nitrification by Nitrospira bacteria," Nature, Nature, vol. 528(7583), pages 504-509, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montaño San Agustin, Daniela & Orta Ledesma, Maria Teresa & Monje Ramírez, Ignacio & Yáñez Noguez, Isaura & Luna Pabello, Víctor Manuel & Velasquez-Orta, Sharon B., 2022. "A non-sterile heterotrophic microalgal process for dual biomass production and carbon removal from swine wastewater," Renewable Energy, Elsevier, vol. 181(C), pages 592-603.
    2. Agata Novara & Valentina Catania & Marco Tolone & Luciano Gristina & Vito Armando Laudicina & Paola Quatrini, 2020. "Cover Crop Impact on Soil Organic Carbon, Nitrogen Dynamics and Microbial Diversity in a Mediterranean Semiarid Vineyard," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    3. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Qiong Wan & Qingji Han & Hailin Luo & Tao He & Feng Xue & Zihuizhong Ye & Chen Chen & Shan Huang, 2020. "Ceramsite Facilitated Microbial Degradation of Pollutants in Domestic Wastewater," IJERPH, MDPI, vol. 17(13), pages 1-13, June.
    5. Ghazal Srivastava & Aparna Kapoor & Absar Ahmad Kazmi, 2023. "Improved Biological Phosphorus Removal under Low Solid Retention Time Regime in Full-Scale Sequencing Batch Reactor," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    6. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    7. Sharif Hossain & Christopher W. K. Chow & David Cook & Emma Sawade & Guna A. Hewa, 2022. "Review of Nitrification Monitoring and Control Strategies in Drinking Water System," IJERPH, MDPI, vol. 19(7), pages 1-31, March.
    8. Nkulu Rolly Kabange & Youngho Kwon & So-Myeong Lee & Ju-Won Kang & Jin-Kyung Cha & Hyeonjin Park & Gamenyah Daniel Dzorkpe & Dongjin Shin & Ki-Won Oh & Jong-Hee Lee, 2023. "Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review," Sustainability, MDPI, vol. 15(22), pages 1-41, November.
    9. Shengbo Gu & Leibin Liu & Xiaojie Zhuang & Jinsheng Qiu & Zhi Zhou, 2022. "Enhanced Nitrogen Removal in a Pilot-Scale Anoxic/Aerobic (A/O) Process Coupling PE Carrier and Nitrifying Bacteria PE Carrier: Performance and Microbial Shift," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    10. William C Nelson & Emily B Graham & Alex R Crump & Sarah J Fansler & Evan V Arntzen & David W Kennedy & James C Stegen, 2020. "Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    11. Aleksandra Wdowczyk & Agata Szymańska-Pulikowska & Magdalena Domańska, 2022. "Analysis of the Bacterial Biocenosis of Activated Sludge Treated with Leachate from Municipal Landfills," IJERPH, MDPI, vol. 19(3), pages 1-22, February.
    12. Ariel Freidenreich & Sanku Dattamudi & Yuncong Li & Krishnaswamy Jayachandran, 2022. "Influence of Leguminous Cover Crops on Soil Chemical and Biological Properties in a No-Till Tropical Fruit Orchard," Land, MDPI, vol. 11(6), pages 1-18, June.
    13. Huai Shi & Guohong Liu & Qianqian Chen, 2024. "Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    14. Li Meng & Jian Shi & Yuanzheng Zhai & Rui Zuo & Jinsheng Wang & Xueru Guo & Yanguo Teng & Jian Gao & Li Xu & Bingchi Guo, 2022. "Ammonium Reactive Migration Process and Functional Bacteria Response along Lateral Runoff Path under Groundwater Exploitation," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    15. Massimo Zilio & Silvia Motta & Fulvia Tambone & Barbara Scaglia & Gabriele Boccasile & Andrea Squartini & Fabrizio Adani, 2020. "The distribution of functional N-cycle related genes and ammonia and nitrate nitrogen in soil profiles fertilized with mineral and organic N fertilizer," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14602-:d:965455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.