IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14000-d955248.html
   My bibliography  Save this article

A Comprehensive Dynamic Life Cycle Assessment Model: Considering Temporally and Spatially Dependent Variations

Author

Listed:
  • Shu Su

    (Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China)

  • Jingyi Ju

    (Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China)

  • Yujie Ding

    (Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China)

  • Jingfeng Yuan

    (Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China)

  • Peng Cui

    (Department of Engineering Management, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

Life cycle assessment (LCA) is a widely-used international environmental evaluation and management method. However, the conventional LCA is in a static context without temporal and spatial variations considered, which fails to bring accurate evaluation values and hinders practical applications. Dynamic LCA research has developed vigorously in the past decade and become a hot topic. However, systematical analysis of spatiotemporal dynamic variations and comprehensive operable dynamic models are still lacking. This study follows LCA paradigm and incorporates time- and space-dependent variations to establish a spatiotemporal dynamic LCA model. The dynamic changes are classified into four types: dynamic foreground elementary flows, dynamic background system, dynamic characterization factors, and dynamic weighting factors. Their potential dynamics and possible quantification methods are analyzed. The dynamic LCA model is applied to a residential building, and significant differences can be observed between dynamic and static assessment results from both temporal and spatial perspectives. This study makes a theoretical contribution by establishing a comprehensive dynamic model with both temporal and spatial variations involved. It is expected to provide practical values for LCA practitioners and help with decision-making and environmental management.

Suggested Citation

  • Shu Su & Jingyi Ju & Yujie Ding & Jingfeng Yuan & Peng Cui, 2022. "A Comprehensive Dynamic Life Cycle Assessment Model: Considering Temporally and Spatially Dependent Variations," IJERPH, MDPI, vol. 19(21), pages 1-18, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14000-:d:955248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yurong Zhang, 2017. "Taking the Time Characteristic into Account of Life Cycle Assessment: Method and Application for Buildings," Sustainability, MDPI, vol. 9(6), pages 1-14, May.
    2. Yang, Jin & Chen, Bin, 2014. "Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective," Applied Energy, Elsevier, vol. 122(C), pages 269-279.
    3. Annie Levasseur & Pascal Lesage & Manuele Margni & Réjean Samson, 2013. "Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 117-128, February.
    4. Gimeno-Frontera, Beatriz & Mainar-Toledo, María Dolores & Sáez de Guinoa, Aitana & Zambrana-Vasquez, David & Zabalza-Bribián, Ignacio, 2018. "Sustainability of non-residential buildings and relevance of main environmental impact contributors' variability. A case study of food retail stores buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 669-681.
    5. Wei, Yi-Ming & Wang, Lu & Liao, Hua & Wang, Ke & Murty, Tad & Yan, Jinyue, 2014. "Responsibility accounting in carbon allocation: A global perspective," Applied Energy, Elsevier, vol. 130(C), pages 122-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    2. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    3. Chiu-Ming Hsiao, 2022. "Economic Growth, CO 2 Emissions Quota and Optimal Allocation under Uncertainty," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    4. Ziheng Niu & Jianliang Xiong & Xuesong Ding & Yao Wu, 2022. "Analysis of China’s Carbon Peak Achievement in 2025," Energies, MDPI, vol. 15(14), pages 1-18, July.
    5. Giovanna Croxatto Vega & Joshua Sohn & Sander Bruun & Stig Irving Olsen & Morten Birkved, 2019. "Maximizing Environmental Impact Savings Potential through Innovative Biorefinery Alternatives: An Application of the TM-LCA Framework for Regional Scale Impact Assessment," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    6. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.
    7. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    8. Brizga, Janis & Räty, Tarmo, 2024. "Production, consumption and trade-based forest land and resource footprints in the Nordic and Baltic countries," Forest Policy and Economics, Elsevier, vol. 161(C).
    9. Fang Wan & Jizu Li, 2023. "Responsibility Allocation of Provincial Industry Emission Reduction from the Perspective of Industrial Linkages—A Case Study of Shanxi Province," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    10. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    11. Raja Chowdhury & Nidia Caetano & Matthew J. Franchetti & Kotnoor Hariprasad, 2023. "Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    12. Jin, Gui & Shi, Xin & Zhang, Lei & Hu, Shougeng, 2020. "Measuring the SCCs of different Chinese regions under future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    15. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    16. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    17. Jim Hart & Francesco Pomponi, 2020. "More Timber in Construction: Unanswered Questions and Future Challenges," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    18. Jiang, Lan & Jiang, Hua, 2023. "Analysis of predictions considering mineral prices, residential energy, and environmental risk: Evidence from the USA in COP 26 perspective," Resources Policy, Elsevier, vol. 82(C).
    19. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    20. Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14000-:d:955248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.