IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i20p13401-d944676.html
   My bibliography  Save this article

Study of the Impact of Industrial Restructuring on the Spatial and Temporal Evolution of Carbon Emission Intensity in Chinese Provinces—Analysis of Mediating Effects Based on Technological Innovation

Author

Listed:
  • Jianshi Wang

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Shangkun Yu

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Mengcheng Li

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Yu Cheng

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Chengxin Wang

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

Abstract

Global warming caused by greenhouse gas emissions seriously threatens a region’s sustainable environmental and socioeconomic development. Promoting industrial restructuring and strengthening technological innovation have become an important path to achieving pollution and carbon reduction as well as the green transformation of economic structure. This paper explored the mechanism of the mediating effect of technological innovation on industrial restructuring and carbon reduction while accounting for the direct effect of industrial restructuring on carbon emissions. Then, based on China’s provincial panel data from 2001 to 2019, we estimated the carbon emission intensity using the Intergovernmental Panel on Climate Change (IPCC)’s methods and analyzed its spatiotemporal evolution characteristics. Finally, we constructed a fixed-effect model and a mediating effect model to empirically analyze how industrial restructuring and technological innovation affect carbon emission intensity. The results are as follows: (1) From 2001 to 2019, China’s carbon emission intensity showed a continuous downward trend, with a pronounced convergence trend; there were obvious differences in carbon emission intensity between eastern, central, and western regions (western region > central region > eastern region) due to the unbalanced industrial structure. (2) In terms of direct effects, industrial restructuring can significantly reduce carbon emission intensity. The intensity of the effect is inversely proportional to the level of industrial restructuring, and the results of sub-regional tests are similar. Nevertheless, there is an obvious regional difference in the size of the carbon emission reduction effect of industrial restructuring in the east, central, and western regions. (3) In terms of indirect effects, industrial restructuring can reduce carbon emission intensity by enhancing technological innovation, and it acts as a mediating variable in the process of industrial restructuring to reduce carbon emission. Finally, we put forward recommendations for promoting industrial restructuring, strengthening green technological innovation, and properly formulating carbon reduction measures to provide a reference for countries and regions to achieve the goals of carbon neutrality, carbon peaking, and high-quality economic development.

Suggested Citation

  • Jianshi Wang & Shangkun Yu & Mengcheng Li & Yu Cheng & Chengxin Wang, 2022. "Study of the Impact of Industrial Restructuring on the Spatial and Temporal Evolution of Carbon Emission Intensity in Chinese Provinces—Analysis of Mediating Effects Based on Technological Innovation," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13401-:d:944676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/20/13401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/20/13401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin, Daleng & Ahmad, Manzoor & Lei, Hong & Khattak, Shoukat Iqbal, 2021. "Do innovation in environmental-related technologies asymmetrically affect carbon dioxide emissions in the United States?," Technology in Society, Elsevier, vol. 67(C).
    2. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    3. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    4. Wenwen Li & Wenping Wang & Yu Wang & Yingbo Qin, 2017. "Industrial structure, technological progress and CO2 emissions in China: Analysis based on the STIRPAT framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1545-1564, September.
    5. Kenichi Matsumoto, Yosuke Shigetomi, Hiroto Shiraki, Yuki Ochi, Yuki Ogawa, and Tomoki Ehara, 2019. "Addressing Key Drivers of Regional CO2 Emissions of the Manufacturing Industry in Japan," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    6. Zhonghua Cheng & Xiai Shi, 2018. "Can Industrial Structural Adjustment Improve the Total-Factor Carbon Emission Performance in China?," IJERPH, MDPI, vol. 15(10), pages 1-20, October.
    7. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    8. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    9. Runde Gu & Chunfa Li & Dongdong Li & Yangyang Yang & Shan Gu, 2022. "The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    10. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    11. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.
    12. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    13. Kofi Adom, Philip & Bekoe, William & Amuakwa-Mensah, Franklin & Mensah, Justice Tei & Botchway, Ebo, 2012. "Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics," Energy, Elsevier, vol. 47(1), pages 314-325.
    14. Magnus Jiborn & Viktoras Kulionis & Astrid Kander, 2020. "Consumption versus Technology: Drivers of Global Carbon Emissions 2000–2014," Energies, MDPI, vol. 13(2), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoxian Su & Yang Yang & Yun Wang & Pan Zhang & Xin Luo, 2023. "Study on Spatiotemporal Evolution Features and Affecting Factors of Collaborative Governance of Pollution Reduction and Carbon Abatement in Urban Agglomerations of the Yellow River Basin," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Jiang Zhu & Xiang Li & Huiming Huang & Xiangdong Yin & Jiangchun Yao & Tao Liu & Jiexuan Wu & Zhangcheng Chen, 2023. "Spatiotemporal Evolution of Carbon Emissions According to Major Function-Oriented Zones: A Case Study of Guangdong Province, China," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    3. Zhiqiang Wu & Zichen Zhao & Wei Gan & Shiqi Zhou & Wen Dong & Mo Wang, 2023. "Achieving Carbon Neutrality through Urban Planning and Design," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    4. Wancheng Xie & Andrew Chapman & Taihua Yan, 2023. "Do Environmental Regulations Facilitate a Low-Carbon Transformation in China’s Resource-Based Cities?," IJERPH, MDPI, vol. 20(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Weike & Fan, Hongxia & Zhao, Qiwei, 2023. "Seeing green: How does digital infrastructure affect carbon emission intensity?," Energy Economics, Elsevier, vol. 127(PB).
    2. Shuhua Zhang & Jian Li & Bao Jiang & Tianmiao Guo, 2023. "Government Intervention, Structural Transformation, and Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    3. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    4. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).
    5. Pei Zhao & Junhua Guo & Yang Wang, 2023. "How Does the Digital Economy Affect Green Development?—Evidence from 284 Cities in China," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    6. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    7. Yuan, Huaxi & Feng, Yidai & Lee, Chien-Chiang & Cen, Yan, 2020. "How does manufacturing agglomeration affect green economic efficiency?," Energy Economics, Elsevier, vol. 92(C).
    8. Songqin Zhao & Diyun Peng & Huwei Wen & Huilin Song, 2022. "Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities?," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    9. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    10. Zeng, Shihong & Li, Tengfei & Wu, Shaomin & Gao, Weijun & Li, Gen, 2024. "Does green technology progress have a significant impact on carbon dioxide emissions?," Energy Economics, Elsevier, vol. 133(C).
    11. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    12. Tian, Ying & Pang, Jun, 2023. "What causes dynamic change of green technology progress: Convergence analysis based on industrial restructuring and environmental regulation," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 189-199.
    13. Liu, Yang & Dong, Kangyin & Wang, Jianda & Taghizadeh-Hesary, Farhad, 2023. "Towards sustainable development goals: Does common prosperity contradict carbon reduction?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 70-88.
    14. Liu, Fengqi & Kang, Yuxin & Guo, Kun, 2022. "Is electricity consumption of Chinese counties decoupled from carbon emissions? A study based on Tapio decoupling index," Energy, Elsevier, vol. 251(C).
    15. Yi Wang & Junke Feng & Nosheena Yasir & Yu Bai, 2022. "The Impact of Political Incentives Received by Key Local Officials on Enterprises’ Green Innovations for the Development and Construction of Ecological Civilization in China," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    16. Linan Gao & Xiaofei Liu & Xinyi Mei & Guangwei Rui & Jingcheng Li, 2022. "Research on the Spatial-Temporal Distribution Characteristics and Influencing Factors of Carbon Emission Efficiency in China’s Metal Smelting Industry—Based on the Three-Stage DEA Method," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    17. Xuehui Yang & Jiaping Zhang & Lehua Bi & Yiming Jiang, 2023. "Does China’s Carbon Trading Pilot Policy Reduce Carbon Emissions? Empirical Analysis from 285 Cities," IJERPH, MDPI, vol. 20(5), pages 1-24, March.
    18. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    19. Lingjun Guo & Yanran Liu, 2022. "Urban-Industrial Development and Regional Economic Growth in a Developing Country: A Spatial Econometric Approach," SAGE Open, , vol. 12(2), pages 21582440221, June.
    20. Feng Dong & Chang Qin & Xiaoyun Zhang & Xu Zhao & Yuling Pan & Yujin Gao & Jiao Zhu & Yangfan Li, 2021. "Towards Carbon Neutrality: The Impact of Renewable Energy Development on Carbon Emission Efficiency," IJERPH, MDPI, vol. 18(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13401-:d:944676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.