IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i1p551-d717734.html
   My bibliography  Save this article

Household Livelihood Vulnerability to Climate Change in West China

Author

Listed:
  • Jinyu Shen

    (School of Economics and Management, South China Agricultural University, Guangzhou 510642, China)

  • Wei Duan

    (School of Economics and Management, South China Agricultural University, Guangzhou 510642, China
    Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China)

  • Yuqi Wang

    (School of Economics and Management, South China Agricultural University, Guangzhou 510642, China)

  • Yijing Zhang

    (School of Economics and Management, South China Agricultural University, Guangzhou 510642, China)

Abstract

Climate change disproportionately affects natural resource-dependent communities in the ecologically vulnerable regions of western China. This study used the household livelihood vulnerability index under the Intergovernmental Panel on Climate Change (HLV-IPCC) to assess vulnerability. Data were collected from 823 households in Ningxia, Gansu, Guangxi, and Yunnan provinces, these being ecologically vulnerable regions in China. With a composite HLVI-IPCC and multiple regression model, the factors that affect households’ adaptive capability to HLVI-IPCC was estimated. Results indicate that Ningxia is the most vulnerable community, while Guangxi is the least vulnerable community across all indices. Moreover, Gansu has the heaviest sensitivity and exposure to climate change, whereas Ningxia has the highest adaptive capability to climate change. In addition, the age of household head and distance of the home to the town center had significant negative impacts on households’ adaptive capacity to HLVI-IPCC. The results also suggest that the HLVI assessment can provide an effective tool for local authorities to formulate prioritizing strategies with promoting climate-resilient development and increasing long-term adaptive capacity.

Suggested Citation

  • Jinyu Shen & Wei Duan & Yuqi Wang & Yijing Zhang, 2022. "Household Livelihood Vulnerability to Climate Change in West China," IJERPH, MDPI, vol. 19(1), pages 1-14, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:1:p:551-:d:717734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/1/551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/1/551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Mingxing & Xu, Xiangbo & Wang, Le & Li, Chang & Zhang, Linxiu, 2021. "Stable energy, energy inequality, and climate change vulnerability in Pan-Third Pole regions: Empirical analysis in cross-national rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Shabana Khan, 2012. "Vulnerability assessments and their planning implications: a case study of the Hutt Valley, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1587-1607, November.
    3. Thomas L. Saaty, 1987. "Risk—Its Priority and Probability: The Analytic Hierarchy Process," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 159-172, June.
    4. Trinh, Thoai Quang & Rañola, Roberto F. & Camacho, Leni D. & Simelton, Elisabeth, 2018. "Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam," Land Use Policy, Elsevier, vol. 70(C), pages 224-231.
    5. He, Guohua & Geng, Chenfan & Zhao, Yong & Wang, Jianhua & Jiang, Shan & Zhu, Yongnan & Wang, Qingming & Wang, Lizhen & Mu, Xing, 2021. "Food habit and climate change impacts on agricultural water security during the peak population period in China," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    7. Tian, Qing & Lemos, Maria Carmen, 2018. "Household Livelihood Differentiation and Vulnerability to Climate Hazards in Rural China," World Development, Elsevier, vol. 108(C), pages 321-331.
    8. Samjhana Adhikari & Nabin Dhungana & Suraj Upadhaya, 2020. "Watershed communities’ livelihood vulnerability to climate change in the Himalayas," Climatic Change, Springer, vol. 162(3), pages 1307-1321, October.
    9. Sènakpon F. A. Dedehouanou & John McPeak, 2020. "Diversify More or Less? Household Income Generation Strategies and Food Security in Rural Nigeria," Journal of Development Studies, Taylor & Francis Journals, vol. 56(3), pages 560-577, March.
    10. Choden, Kunzang & Nitschke, Craig R. & Stewart, Stephen B. & Keenan, Rodney J., 2021. "The potential impacts of climate change on the distribution of key tree species and Cordyceps in Bhutan: Implications for ecological functions and rural livelihoods," Ecological Modelling, Elsevier, vol. 455(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhen & Li, Qiuming & Lan, Jing & Abu Hatab, Assem, 2020. "Does participation in the sloping land conversion program reduce the sensitivity of Chinese farmers to climate change?," Land Use Policy, Elsevier, vol. 99(C).
    2. Islam, Masanori Matsuura Yir-Huieh Luh Abu Hayat Md. Saiful, 2021. "Climate Variability, Livelihood Diversification, and Household Food Security in Bangladesh," 2021 ASAE 10th International Conference (Virtual), January 11-13, Beijing, China 329402, Asian Society of Agricultural Economists (ASAE).
    3. Cen, Yu & Yin, Jinpeng, 2024. "Navigating climate challenges: Focusing on the effectiveness of natural resource rents, fintech, green finance, environmental quality, and digitalisation," Resources Policy, Elsevier, vol. 95(C).
    4. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Dang, Hoa Le & Pham, Thuyen Thi & Hong Pham, Nhung Thi & Pham, Nam Khanh, 2024. "Gender differences in adaptation strategies to salinity intrusion in the Mekong Delta, Vietnam: An intra-household analysis," EfD Discussion Paper 24-2, Environment for Development, University of Gothenburg.
    6. Xiaoyan Jiang & Sai Wang & Jie Wang & Sainan Lyu & Martin Skitmore, 2020. "A Decision Method for Construction Safety Risk Management Based on Ontology and Improved CBR: Example of a Subway Project," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    7. Dang, Hoa Le & Pham, Thuyen Thi & Pham, Nhung Thi Hong & Nam, Pham Khanh, 2022. "Gender-Differentiated Determinants of Rice Farmers' Choice of Strategies to Adapt to Salinity Intrusion in the Mekong Delta, Vietnam," EfD Discussion Paper 22-9, Environment for Development, University of Gothenburg.
    8. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    9. Thu-Huong Nguyen & Oz Sahin & Michael Howes, 2021. "Climate Change Adaptation Influences and Barriers Impacting the Asian Agricultural Industry," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    10. Patrick Krieger & Carsten Lausberg, 2021. "Entscheidungen, Entscheidungsfindung und Entscheidungsunterstützung in der Immobilienwirtschaft: Eine systematische Literaturübersicht [Decisions, decision-making and decisions support systems in r," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 7(1), pages 1-33, April.
    11. Yan Chen & Xiaohong Chen & Hongshan Ai & Xiaoqing Tan, 2022. "Temperature and Migration Intention: Evidence from the Unified National Graduate Entrance Examination in China," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    12. Xin Xuan & Bing Liu & Fan Zhang, 2021. "Climate Change and Adaptive Management: Case Study in Agriculture, Forestry and Pastoral Areas," Land, MDPI, vol. 10(8), pages 1-17, August.
    13. Dao Duy Minh & Nguyen Dang Hao & Philippe Lebailly, 2020. "Adapting to Climate Extreme Events Based on Livelihood Strategies: Evidence from Rural Areas in Thua Thien Hue Province, Vietnam," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    14. Qi Wei & Rui Wang & Chuan-Yang Ruan, 2024. "Similarity Measures of Probabilistic Interval Preference Ordering Sets and Their Applications in Decision-Making," Mathematics, MDPI, vol. 12(20), pages 1-26, October.
    15. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    16. Liu, Zhonglu & He, Shuguang & Men, Wenjiao & Sun, Haibo, 2024. "Impact of climate risk on financial stability: Cross-country evidence," International Review of Financial Analysis, Elsevier, vol. 92(C).
    17. Tiéfigué Pierrette Coulibaly & Jianguo Du & Daniel Diakité & Olivier Joseph Abban & Elvis Kouakou, 2021. "A Proposed Conceptual Framework on the Adoption of Sustainable Agricultural Practices: The Role of Network Contact Frequency and Institutional Trust," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    18. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    19. Zichen Han & Hailiang Ma, 2021. "Adaptability Assessment and Analysis of Temporal and Spatial Differences of Water-Energy-Food System in Yangtze River Delta in China," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    20. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:1:p:551-:d:717734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.