IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p11094-d906705.html
   My bibliography  Save this article

Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model

Author

Listed:
  • Lianlong Ma

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Dong Huang

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xinyu Jiang

    (School of Management, Wuhan University of Technology, Wuhan 430070, China)

  • Xiaozhou Huang

    (School of Statistics and Mathematics, Hubei University of Economics, Wuhan 430205, China)

Abstract

The increasing frequency of floods is causing an increasing impact on urban communities. To identify the key influencing factors of functional loss in Chinese urban communities under floods, this paper explored the influencing factors and factor combinations through a social network analysis approach using the 265 cases of urban communities in China affected by floods collected from 2017–2021 as research data. The key influencing factors and factor combinations were identified comprehensively using multiple indicator analyses such as core-periphery structure, node centrality, and factor pairing. The analysis results showed that “road disruption”, “housing inundation”, and “power interruption” are the three most critical factors affecting the functional loss of urban communities in China under floods, followed by “residents trapped”, “enterprises flooded”, and “silt accumulation”. In addition, “road disruption–housing inundation”, “housing inundation–residents trapped”, and “road disruption–residents trapped” are the most common combinations of influencing factors.

Suggested Citation

  • Lianlong Ma & Dong Huang & Xinyu Jiang & Xiaozhou Huang, 2022. "Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model," IJERPH, MDPI, vol. 19(17), pages 1-14, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:11094-:d:906705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/11094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/11094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joost Santos & Christian Yip & Shital Thekdi & Sheree Pagsuyoin, 2020. "Workforce/Population, Economy, Infrastructure, Geography, Hierarchy, and Time (WEIGHT): Reflections on the Plural Dimensions of Disaster Resilience," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 43-67, January.
    2. Camilo Gomez & Andrés D. González & Hiba Baroud & Claudia D. Bedoya‐Motta, 2019. "Integrating Operational and Organizational Aspects in Interdependent Infrastructure Network Recovery," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1913-1929, September.
    3. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    4. Susan Spierre Clark & Thomas P. Seager & Mikhail V. Chester, 2018. "A capabilities approach to the prioritization of critical infrastructure," Environment Systems and Decisions, Springer, vol. 38(3), pages 339-352, September.
    5. Wei Zhang & Gabriele Villarini & Gabriel A. Vecchi & James A. Smith, 2018. "Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston," Nature, Nature, vol. 563(7731), pages 384-388, November.
    6. Wenxia Zhang & Tianjun Zhou & Liwei Zou & Lixia Zhang & Xiaolong Chen, 2018. "Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Anne M. van Valkengoed & Linda Steg, 2019. "Meta-analyses of factors motivating climate change adaptation behaviour," Nature Climate Change, Nature, vol. 9(2), pages 158-163, February.
    8. Yeowon Kim & Daniel A. Eisenberg & Emily N. Bondank & Mikhail V. Chester & Giuseppe Mascaro & B. Shane Underwood, 2017. "Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change," Climatic Change, Springer, vol. 145(3), pages 397-412, December.
    9. P. Bubeck & W. J. W. Botzen & J. C. J. H. Aerts, 2012. "A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1481-1495, September.
    10. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom M. Logan & Seth D. Guikema, 2020. "Reframing Resilience: Equitable Access to Essential Services," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1538-1553, August.
    2. Qin Ji & Jianping Yang & Can Wang & Hongju Chen & Qingshan He & Zhenqi Sun & Quntao Duan & Yao Li, 2021. "The Risk of the Population in a Changing Climate over the Tibetan Plateau, China: Integrating Hazard, Population Exposure and Vulnerability," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    3. Galen Newman & Tianqi Shi & Zhen Yao & Dongying Li & Garett Sansom & Katie Kirsch & Gaston Casillas & Jennifer Horney, 2020. "Citizen Science-Informed Community Master Planning: Land Use and Built Environment Changes to Increase Flood Resilience and Decrease Contaminant Exposure," IJERPH, MDPI, vol. 17(2), pages 1-13, January.
    4. Adloff, Susann, 2021. "Adapting to Climate Change: Threat Experience, Cognition and Protection Motivation," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242400, Verein für Socialpolitik / German Economic Association.
    5. Ewa Lechowska, 2022. "Approaches in research on flood risk perception and their importance in flood risk management: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2343-2378, April.
    6. Paul Hudson & Philip Bubeck & Annegret H. Thieken, 2022. "A comparison of flood-protective decision-making between German households and businesses," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-22, January.
    7. Joowon Im, 2019. "Green Streets to Serve Urban Sustainability: Benefits and Typology," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    8. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    9. Delin Liu & Xiaole Chang & Siyu Wu & Yongling Zhang & Nana Kong & Xiaobing Zhang, 2024. "Influencing Factors of Urban Public Flood Emergency Evacuation Decision Behavior Based on Protection Motivation Theory: An Example from Jiaozuo City, China," Sustainability, MDPI, vol. 16(13), pages 1-15, June.
    10. Violeta Mihaela Dincă & Mihail Busu & Zoltan Nagy-Bege, 2022. "Determinants with Impact on Romanian Consumers’ Energy-Saving Habits," Energies, MDPI, vol. 15(11), pages 1-18, June.
    11. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    12. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    13. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Marijn H. C. Meijers & Christin Scholz & Ragnheiður “Heather” Torfadóttir & Anke Wonneberger & Marko Markov, 2022. "Learning from the COVID-19 pandemic to combat climate change: comparing drivers of individual action in global crises," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(2), pages 272-282, June.
    15. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    16. Mutlu, Asli & Roy, Debraj & Filatova, Tatiana, 2023. "Capitalized value of evolving flood risks discount and nature-based solution premiums on property prices," Ecological Economics, Elsevier, vol. 205(C).
    17. Tianzhuo Liu & Huifang Jiao, 2018. "Insights into the Effects of Cognitive Factors and Risk Attitudes on Fire Risk Mitigation Behavior," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1213-1232, December.
    18. Changshi Liu & Gang Kou & Yi Peng & Fawaz E. Alsaadi, 2019. "Location-Routing Problem for Relief Distribution in the Early Post-Earthquake Stage from the Perspective of Fairness," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    19. Hilary Byerly Flint & Paul Cada & Patricia A. Champ & Jamie Gomez & Danny Margoles & James R. Meldrum & Hannah Brenkert-Smith, 2022. "You vs. us: framing adaptation behavior in terms of private or social benefits," Climatic Change, Springer, vol. 174(1), pages 1-17, September.
    20. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:11094-:d:906705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.