IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10928-d904212.html
   My bibliography  Save this article

MMDCP: Multi-Modal Dental Caries Prediction for Decision Support System Using Deep Learning

Author

Listed:
  • Soualihou Ngnamsie Njimbouom

    (Department of Computer and Electronics Convergence Engineering, Sun Moon University, Asan 31460, Korea)

  • Kwonwoo Lee

    (Department of Computer and Electronics Convergence Engineering, Sun Moon University, Asan 31460, Korea)

  • Jeong-Dong Kim

    (Department of Computer and Electronics Convergence Engineering, Sun Moon University, Asan 31460, Korea
    Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea)

Abstract

In recent years, healthcare has gained unprecedented attention from researchers in the field of Human health science and technology. Oral health, a subdomain of healthcare described as being very complex, is threatened by diseases like dental caries, gum disease, oral cancer, etc. The critical point is to propose an identification mechanism to prevent the population from being affected by these diseases. The large amount of online data allows scholars to perform tremendous research on health conditions, specifically oral health. Regardless of the high-performing dental consultation tools available in current healthcare, computer-based technology has shown the ability to complete some tasks in less time and cost less than when using similar healthcare tools to perform the same type of work. Machine learning has displayed a wide variety of advantages in oral healthcare, such as predicting dental caries in the population. Compared to the standard dental caries prediction previously proposed, this work emphasizes the importance of using multiple data sources, referred to as multi-modality, to extract more features and obtain accurate performances. The proposed prediction model constructed using multi-modal data demonstrated promising performances with an accuracy of 90%, F1-score of 89%, a recall of 90%, and a precision of 89%.

Suggested Citation

  • Soualihou Ngnamsie Njimbouom & Kwonwoo Lee & Jeong-Dong Kim, 2022. "MMDCP: Multi-Modal Dental Caries Prediction for Decision Support System Using Deep Learning," IJERPH, MDPI, vol. 19(17), pages 1-16, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10928-:d:904212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    3. Jonathan G. Richens & Ciarán M. Lee & Saurabh Johri, 2020. "Improving the accuracy of medical diagnosis with causal machine learning," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    3. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    4. Jungyoon Kim & Jihye Lim, 2021. "A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    5. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    7. Claus Zippel & Sabine Bohnet-Joschko, 2021. "Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    8. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    9. Jamil Ahmad & Abdul Khader Jilani Saudagar & Khalid Mahmood Malik & Waseem Ahmad & Muhammad Badruddin Khan & Mozaherul Hoque Abul Hasanat & Abdullah AlTameem & Mohammed AlKhathami & Muhammad Sajjad, 2022. "Disease Progression Detection via Deep Sequence Learning of Successive Radiographic Scans," IJERPH, MDPI, vol. 19(1), pages 1-16, January.
    10. Rasheed Omobolaji Alabi & Alhadi Almangush & Mohammed Elmusrati & Ilmo Leivo & Antti Mäkitie, 2022. "Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication," IJERPH, MDPI, vol. 19(14), pages 1-13, July.
    11. Andreas Fügener & Jörn Grahl & Alok Gupta & Wolfgang Ketter, 2022. "Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation," Information Systems Research, INFORMS, vol. 33(2), pages 678-696, June.
    12. Vidhya V. & Anjan Gudigar & U. Raghavendra & Ajay Hegde & Girish R. Menon & Filippo Molinari & Edward J. Ciaccio & U. Rajendra Acharya, 2021. "Automated Detection and Screening of Traumatic Brain Injury (TBI) Using Computed Tomography Images: A Comprehensive Review and Future Perspectives," IJERPH, MDPI, vol. 18(12), pages 1-29, June.
    13. Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    14. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    15. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    16. Kai Feng & Han Hong & Ke Tang & Jingyuan Wang, 2023. "Statistical Tests for Replacing Human Decision Makers with Algorithms," Papers 2306.11689, arXiv.org.
    17. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Zhiming Cui & Yu Fang & Lanzhuju Mei & Bojun Zhang & Bo Yu & Jiameng Liu & Caiwen Jiang & Yuhang Sun & Lei Ma & Jiawei Huang & Yang Liu & Yue Zhao & Chunfeng Lian & Zhongxiang Ding & Min Zhu & Dinggan, 2022. "A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Chowdhury, Emon Kalyan, 2019. "Use of Artificial Intelligence in Stock Trading," MPRA Paper 118175, University Library of Munich, Germany, revised 18 Apr 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10928-:d:904212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.