IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10696-d899545.html
   My bibliography  Save this article

A CAST-Based Analysis of the Metro Accident That Was Triggered by the Zhengzhou Heavy Rainstorm Disaster

Author

Listed:
  • Jiale Zhao

    (College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China)

  • Fuqiang Yang

    (College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China)

  • Yong Guo

    (College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China)

  • Xin Ren

    (Safety and Security Science Group, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands)

Abstract

Emergency management research is used to deal with the increasing number of extreme weather threats in urban areas. This paper uses causal analysis based on systems theory (CAST) to review the subway water ingress accident and the government’s emergency management actions in Zhengzhou, Henan Province, during the heavy rainstorm disaster on 20 July 2021. The aims of this article are to establish safety control structures at both the enterprise level and the government level, and to systematically analyze the problems in emergency management in Zhengzhou City. Our analysis found that the construction of disaster prevention facilities restricted emergency management. Therefore, we suggest that enterprises and governments not only pay attention to emergency management, but also to the construction of disaster prevention facilities. This article also points out that the system of chief executive responsibility that is implemented in China is becoming a double-edged sword in emergency management. Our study makes recommendations for enhancing the capacities of emergency management, points out the shortcomings of the existing emergency management structure, and provides knowledge gained for future emergency management research.

Suggested Citation

  • Jiale Zhao & Fuqiang Yang & Yong Guo & Xin Ren, 2022. "A CAST-Based Analysis of the Metro Accident That Was Triggered by the Zhengzhou Heavy Rainstorm Disaster," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10696-:d:899545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xianhua Wu & Yaru Cao & Yang Xiao & Ji Guo, 2020. "Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics," Annals of Operations Research, Springer, vol. 290(1), pages 865-896, July.
    2. Likun Wang & Jinhui Wang & Mingyang Shi & Shanshan Fu & Mo Zhu, 2021. "Critical risk factors in ship fire accidents," Maritime Policy & Management, Taylor & Francis Journals, vol. 48(6), pages 895-913, August.
    3. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    4. Xianhua Wu & Jiqiang Zhao & Yun Kuai & Ji Guo & Ge Gao, 2021. "Construction and verification of a rainstorm death risk index based on grid data fusion: a case study of the Beijing rainstorm on July 21, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2293-2318, July.
    5. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    6. Xuesong Guo & Naim Kapucu, 2015. "Examining collaborative disaster response in China: network perspectives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1773-1789, December.
    7. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Niki Matinrad, 2016. "Disaster Management from a POM Perspective: Mapping a New Domain," Production and Operations Management, Production and Operations Management Society, vol. 25(10), pages 1611-1637, October.
    8. Hao Yang & Linshuang Zhao & Jun Chen, 2022. "Metro System Inundation in Zhengzhou, Henan Province, China," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    9. Nengcheng Chen & Shuang Yao & Chao Wang & Wenying Du, 2019. "A Method for Urban Flood Risk Assessment and Zoning Considering Road Environments and Terrain," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    10. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    11. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    12. Yang Xiao & Beiqun Li & Zaiwu Gong, 2018. "Real-time identification of urban rainstorm waterlogging disasters based on Weibo big data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 833-842, November.
    13. Ying Lu & Shuqi Sun, 2020. "Scenario-Based Allocation of Emergency Resources in Metro Emergencies: A Model Development and a Case Study of Nanjing Metro," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    14. Yingyu Zhang & Chang Sun & Wei Shan & Cai Junqing & Linlin Jing & Wei Shao, 2020. "Systems approach for the safety and security of hazardous chemicals," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(4), pages 500-522, June.
    15. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    16. Sejin Park & Melissa Graham & Elizabeth Avery Foster, 2022. "Improving Local Government Resilience: Highlighting the Role of Internal Resources in Crisis Management," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.
    2. Carlos Galera-Zarco & Goulielmos Floros, 2024. "A deep learning approach to improve built asset operations and disaster management in critical events: an integrative simulation model for quicker decision making," Annals of Operations Research, Springer, vol. 339(1), pages 573-612, August.
    3. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    4. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    5. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    6. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    7. Samuel Fosso Wamba, 2022. "Humanitarian supply chain: a bibliometric analysis and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 937-963, December.
    8. Hongzhe Zhang & Xiaohang Zhao & Xiao Fang & Bintong Chen, 2024. "Proactive Resource Request for Disaster Response: A Deep Learning-Based Optimization Model," Information Systems Research, INFORMS, vol. 35(2), pages 528-550, June.
    9. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    10. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    11. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    12. Kovacs, Gyöngyi & Moshtari, Mohammad, 2019. "A roadmap for higher research quality in humanitarian operations: A methodological perspective," European Journal of Operational Research, Elsevier, vol. 276(2), pages 395-408.
    13. Raktim Pal & Nezih Altay, 2023. "The missing link in disruption management research: coping," Operations Management Research, Springer, vol. 16(1), pages 433-449, March.
    14. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    15. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    16. Sameer Prasad & Jason Woldt & Jasmine Tata & Nezih Altay, 2019. "Application of project management to disaster resilience," Annals of Operations Research, Springer, vol. 283(1), pages 561-590, December.
    17. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    18. Tongxin Liu & Jun Li & Xihui Wang, 2024. "Enhancing the cost performance in regular humanitarian logistics: location-routing and delivery frequency optimization," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 1157-1185, September.
    19. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    20. Gabriel Zayas‐Cabán & Emmett J. Lodree & David L. Kaufman, 2020. "Optimal Control of Parallel Queues for Managing Volunteer Convergence," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2268-2288, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10696-:d:899545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.