IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10296-d891837.html
   My bibliography  Save this article

The Impacts of Nitrogen Pollution and Urbanization on the Carbon Dioxide Emission from Sewage-Draining River Networks

Author

Listed:
  • Yongmei Hou

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
    School of Geography and Environmental Science, Tianjin Normal University, Tianjin 300387, China)

  • Xiaolong Liu

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China)

  • Guilin Han

    (Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China)

  • Li Bai

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China)

  • Jun Li

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China)

  • Yusi Wang

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
    School of Geography and Environmental Science, Tianjin Normal University, Tianjin 300387, China)

Abstract

Carbon dioxide (CO 2 ) emissions from river water have sparked worldwide concerns due to supersaturate CO 2 levels in the majority of global rivers, while the knowledge on the associations among nitrogen pollution, urbanization, and CO 2 emissions is still limited. In this study, the CO 2 partial pressure ( p CO 2 ), carbon and nitrogen species, and water parameters in sewage-draining river networks were investigated. Extremely high p CO 2 levels were observed in sewage and drainage river waters, such as Longfeng River, Beijing-drainage River, and Beitang-drainage River, which were approximately 4 times higher than the averaged p CO 2 in worldwide rivers. Correlations of carbon/nitrogen species and p CO 2 indicated that carbon dioxide in rural rivers and sewage waters primarily originated from soil aeration zones and biological processes of organic carbon/nitrogen input from drainage waters, while that in urban rivers and lakes was mainly dominated by organic matter degradation and biological respiration. Enhanced internal primary productivity played critical roles in absorbing CO 2 by photosynthesis in some unsaturated p CO 2 sampling sites. Additionally, higher p CO 2 levels have been observed with higher NH 4 + -N and lower DO. CO 2 fluxes in sewage waters exhibited extremely high levels compared with those of natural rivers. The results could provide implications for assessing CO 2 emissions in diverse waters and fulfilling water management polices when considering water contamination under intense anthropogenic activities.

Suggested Citation

  • Yongmei Hou & Xiaolong Liu & Guilin Han & Li Bai & Jun Li & Yusi Wang, 2022. "The Impacts of Nitrogen Pollution and Urbanization on the Carbon Dioxide Emission from Sewage-Draining River Networks," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10296-:d:891837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey E. Richey & John M. Melack & Anthony K. Aufdenkampe & Victoria M. Ballester & Laura L. Hess, 2002. "Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2," Nature, Nature, vol. 416(6881), pages 617-620, April.
    2. Gwenaël Abril & Jean-Michel Martinez & L. Felipe Artigas & Patricia Moreira-Turcq & Marc F. Benedetti & Luciana Vidal & Tarik Meziane & Jung-Hyun Kim & Marcelo C. Bernardes & Nicolas Savoye & Jonathan, 2014. "Amazon River carbon dioxide outgassing fuelled by wetlands," Nature, Nature, vol. 505(7483), pages 395-398, January.
    3. Peter A. Raymond & Jens Hartmann & Ronny Lauerwald & Sebastian Sobek & Cory McDonald & Mark Hoover & David Butman & Robert Striegl & Emilio Mayorga & Christoph Humborg & Pirkko Kortelainen & Hans Dürr, 2013. "Global carbon dioxide emissions from inland waters," Nature, Nature, vol. 503(7476), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqiang Li & Guilin Han & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Jinke Liu, 2019. "Hydrochemistry and Dissolved Inorganic Carbon (DIC) Cycling in a Tropical Agricultural River, Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    2. Prerna Joshi & N. Siva Siddaiah, 2021. "Carbon dioxide dynamics of Bhalswa Lake: a human-impacted urban wetland of Delhi, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18116-18142, December.
    3. Shaoda Liu, 2019. "Carbon Dioxide Emission from Streams and Rivers as an Integrative Part of Terrestrial Respiration," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 19(2), pages 50-54, May.
    4. Leonardo Amora-Nogueira & Christian J. Sanders & Alex Enrich-Prast & Luciana Silva Monteiro Sanders & Rodrigo Coutinho Abuchacra & Patricia F. Moreira-Turcq & Renato Campello Cordeiro & Vincent Gauci , 2022. "Tropical forests as drivers of lake carbon burial," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    6. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    7. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Jiping Sheng & Xiaoge Gao & Yongqi Sun, 2024. "Sustainability of the Food Industry: Ecological Efficiency and Influencing Mechanism of Carbon Emissions Trading Policy in China," Sustainability, MDPI, vol. 16(5), pages 1-25, March.
    9. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    10. Yuqing Miao & Fanghu Sun & Weilin Hong & Fengman Fang & Jian Yu & Hao Luo & Chuansheng Wu & Guanglai Xu & Yilin Sun & Henan Meng, 2022. "Greenhouse Gas Emissions from a Main Tributary of the Yangtze River, Eastern China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    11. Ji, Qianfeng & Li, Kefeng & Wang, Yuanming & Feng, Jingjie & Li, Ran & Liang, Ruifeng, 2022. "Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station," Renewable Energy, Elsevier, vol. 195(C), pages 946-956.
    12. Dong Liu & Kun Shi & Peng Chen & Nuoxiao Yan & Lishan Ran & Tiit Kutser & Andrew N. Tyler & Evangelos Spyrakos & R. Iestyn Woolway & Yunlin Zhang & Hongtao Duan, 2024. "Substantial increase of organic carbon storage in Chinese lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Tiphaine Chevallier & Maud Loireau & Romain Courault & lydie chapuis-lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration," ULB Institutional Repository 2013/312984, ULB -- Universite Libre de Bruxelles.
    14. Brainard, Julii & Lovett, Andrew & Bateman, Ian, 2006. "Sensitivity analysis in calculating the social value of carbon sequestered in British grown Sitka spruce," Journal of Forest Economics, Elsevier, vol. 12(3), pages 201-228, December.
    15. dos Santos, Marco Aurelio & Rosa, Luiz Pinguelli & Sikar, Bohdan & Sikar, Elizabeth & dos Santos, Ednaldo Oliveira, 2006. "Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants," Energy Policy, Elsevier, vol. 34(4), pages 481-488, March.
    16. Xiaowei Chuai & Ye Yuan & Rongqin Zhao & Song Song, 2021. "High-resolution monitoring of inland water bodies across China in long time series and water resource changes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3673-3695, March.
    17. Brainard, Julii & Bateman, Ian J. & Lovett, Andrew A., 2009. "The social value of carbon sequestered in Great Britain's woodlands," Ecological Economics, Elsevier, vol. 68(4), pages 1257-1267, February.
    18. Jean-Sébastien Landry & Navin Ramankutty, 2015. "Carbon Cycling, Climate Regulation, and Disturbances in Canadian Forests: Scientific Principles for Management," Land, MDPI, vol. 4(1), pages 1-36, January.
    19. Long Ho & Peter Goethals, 2020. "Research hotspots and current challenges of lakes and reservoirs: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 603-631, July.
    20. Jinke Liu & Guilin Han & Xiaolong Liu & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Xiaoqiang Li, 2019. "Impacts of Anthropogenic Changes on the Mun River Water: Insight from Spatio-Distributions and Relationship of C and N Species in Northeast Thailand," IJERPH, MDPI, vol. 16(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10296-:d:891837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.