IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9149-d872759.html
   My bibliography  Save this article

Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China

Author

Listed:
  • Hongyu Du

    (Institute of Ecology and Sustainable Development, Shanghai Academy of Social Sciences, No. 7, Lane 622, Huaihaizhong Road, Huangpu District, Shanghai 200020, China)

  • Fengqi Zhou

    (Institute of Ecology and Sustainable Development, Shanghai Academy of Social Sciences, No. 7, Lane 622, Huaihaizhong Road, Huangpu District, Shanghai 200020, China)

Abstract

Due to the progress in global warming, the frequency, duration and intensity of climate extremes are increasing. As one of these extremes, heat waves influence the well-being of human beings and increase societies’ energy consumption. The Water-Cooling Island (WCI) effect of urban water bodies (UWBs) is important in urban heat wave mitigation. In this paper, the impact of WCI, especially the landscape pattern of the surrounding area, was explored. The results indicate that water bodies with a larger total area and simpler shape have a longer cooling effect. In the areas surrounding UWBs, a lower percentage or discrete distribution of impervious surfaces or green land provide a longer cooling effect. The amplitude of WCI is mainly decided by the impervious surface in the surrounding areas. A lower percentage or discrete distribution of impervious surfaces or green land leads to a smaller-amplitude WCI. The gradient is impacted by the shape of the UWB and surrounding green land. A complex shape and discrete distribution of green land lead to a higher gradient of WCI. The linear regress model was significant in terms of WCI range and gradient, while the model of WCI amplitude was not significant. This indicates that WCI is directly decided by impact factors through gradient and range. The conclusions provide a methodology for WCI prediction and optimization, which is important when mitigating summer heat waves.

Suggested Citation

  • Hongyu Du & Fengqi Zhou, 2022. "Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China," IJERPH, MDPI, vol. 19(15), pages 1-14, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9149-:d:872759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lizhong Hua & Xinxin Zhang & Qin Nie & Fengqin Sun & Lina Tang, 2020. "The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    2. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    3. Terry P. Hughes & James T. Kerry & Sean R. Connolly & Andrew H. Baird & C. Mark Eakin & Scott F. Heron & Andrew S. Hoey & Mia O. Hoogenboom & Mizue Jacobson & Gang Liu & Morgan S. Pratchett & William , 2019. "Ecological memory modifies the cumulative impact of recurrent climate extremes," Nature Climate Change, Nature, vol. 9(1), pages 40-43, January.
    4. Zhijie Wu & Yixin Zhang, 2019. "Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect," Sustainability, MDPI, vol. 11(3), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    2. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    3. Schallaböck, Karl Otto & Fischedick, Manfred & Brouns, Bernd & Luhmann, Hans-Jochen & Merten, Frank, 2006. "Klimawirksame Emissionen des PKW-Verkehrs und Bewertung von Minderungsstrategien," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 34, number 34.
    4. Majda Ćesić & Katarina Rogulj & Jelena Kilić Pamuković & Andrija Krtalić, 2024. "A Systematic Review on Fuzzy Decision Support Systems and Multi-Criteria Analysis in Urban Heat Island Management," Energies, MDPI, vol. 17(9), pages 1-41, April.
    5. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    6. Michel Beine & Ilan Noy & Christopher Parsons, 2021. "Climate change, migration and voice," Climatic Change, Springer, vol. 167(1), pages 1-27, July.
    7. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    8. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    9. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.
    10. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    11. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    12. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    13. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    14. John McClure & Ilan Noy & Yoshi Kashima & Taciano L. Milfont, 2022. "Attributions for extreme weather events: science and the people," Climatic Change, Springer, vol. 174(3), pages 1-17, October.
    15. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    16. Thomas, Vinod & Albert, Jose Ramon G. & Perez, Rosa T., 2012. "Examination of Intense Climate-related Disasters in the Asia-Pacific," Discussion Papers DP 2012-16, Philippine Institute for Development Studies.
    17. Douglas Hanley & Daron Acemoglu & Ufuk Akcigit & William Kerr, 2014. "Transition to Clean Technology," Working Paper 534, Department of Economics, University of Pittsburgh, revised Jan 2014.
    18. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    19. Srinivasan, Venkatraman & Kumar, Praveen, 2015. "Emergent and divergent resilience behavior in catastrophic shift systems," Ecological Modelling, Elsevier, vol. 298(C), pages 87-105.
    20. Yang, Wangming & Luan, Yibo & Liu, Xiaolei & Yu, Xiaoyong & Miao, Lijuan & Cui, Xuefeng, 2017. "A new global anthropogenic heat estimation based on high-resolution nighttime light data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4, pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9149-:d:872759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.