IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p7789-d847364.html
   My bibliography  Save this article

Nitrogen Addition Affects Nitrous Oxide Emissions of Rainfed Lucerne Grassland

Author

Listed:
  • Yuan Li

    (The State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agri-Culture Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, Lanzhou University, Lanzhou 730020, China)

  • Gang Wang

    (The State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agri-Culture Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, Lanzhou University, Lanzhou 730020, China)

  • Narasinha J. Shurpali

    (Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, FI-71750 Kuopio, Finland)

  • Yuying Shen

    (The State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agri-Culture Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, Lanzhou University, Lanzhou 730020, China)

Abstract

Nitrous oxide (N 2 O) is a potent greenhouse gas. Assessing the N 2 O emission from lucerne grasslands with nitrogen addition will aid in estimating the annual N 2 O emissions of such agriculture areas, particularly following summer rainfall events in light of precipitation variation associated with global change. Here, we measured soil N 2 O emissions, soil temperature and water content of lucerne grasslands with four levels of nitrogen addition over 25 days, which included 10 rainfall events. Results showed that nitrogen addition was observed to increase soil NO 3 − -N content, but not significantly improve dry matter yield, height or leaf area index. Nitrogen addition and rainfall significantly affected N 2 O emissions, while the response of N 2 O emissions to increasing nitrogen input was not linear. Relative soil gas diffusivity (D p /D o ) and water-filled pore space (WFPS) were good indicators of N 2 O diurnal dynamics, and D p /D o was able to explain slightly more of the variation in N 2 O emissions than WFPS. Collectively, nitrogen addition did not affect lucerne dry matter yield in a short term, while it induced soil N 2 O emissions when rainfall events alter soil water content, and D p /D o could be a better proxy for predicting N 2 O emissions in rainfed lucerne grasslands.

Suggested Citation

  • Yuan Li & Gang Wang & Narasinha J. Shurpali & Yuying Shen, 2022. "Nitrogen Addition Affects Nitrous Oxide Emissions of Rainfed Lucerne Grassland," IJERPH, MDPI, vol. 19(13), pages 1-13, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7789-:d:847364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/7789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/7789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Y. Mahama & P. V. V. Prasad & K. L. Roozeboom & J. B. Nippert & C. W. Rice, 2020. "Reduction of Nitrogen Fertilizer Requirements and Nitrous Oxide Emissions Using Legume Cover Crops in a No-Tillage Sorghum Production System," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    2. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    3. Camille Rousset & Timothy J. Clough & Peter R. Grace & David W. Rowlings & Clemens Scheer, 2021. "Irrigation Scheduling with Soil Gas Diffusivity as a Decision Tool to Mitigate N 2 O Emissions from a Urine-Affected Pasture," Agriculture, MDPI, vol. 11(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Shrestha, N.K. & Shukla, S., 2014. "Basal crop coefficients for vine and erect crops with plastic mulch in a sub-tropical region," Agricultural Water Management, Elsevier, vol. 143(C), pages 29-37.
    4. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    5. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    6. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    8. Al-Qthanin, Rahmah N. & AbdAlghafar, Ibrahim M. & Mahmoud, Doaa S. & Fikry, Ahmed M. & AlEnezi, Norah A. & Elesawi, Ibrahim Eid & AbuQamar, Synan F. & Gad, Mohamed M. & El-Tarabily, Khaled A., 2024. "Impact of rice straw mulching on water consumption and productivity of orange trees [Citrus sinensis (L.) Osbeck]," Agricultural Water Management, Elsevier, vol. 298(C).
    9. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    10. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    12. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    15. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    16. Zhang, Yuanhong & Wang, Rui & Wang, Shulan & Ning, Fang & Wang, Hao & Wen, Pengfei & Li, Ao & Dong, Zhaoyang & Xu, Zonggui & Zhang, Yujiao & Li, Jun, 2019. "Effect of planting density on deep soil water and maize yield on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    17. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    18. Zhang, Xinmin & Hu, Lin & Bian, Xiuju & Zhao, Bingxiang & Chai, Fahe & Sun, Xinzhang, 2007. "The most economical irrigation amount and evapotranspiration of the turfgrasses in Beijing City, China," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 98-104, April.
    19. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    20. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7789-:d:847364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.