IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p6269-d820869.html
   My bibliography  Save this article

Understanding COVID-19 Halal Vaccination Discourse on Facebook and Twitter Using Aspect-Based Sentiment Analysis and Text Emotion Analysis

Author

Listed:
  • Ali Feizollah

    (Universiti Malaya Halal Research Centre, Universiti Malaya, Kuala Lumpur 50603, Malaysia
    Department of Computer System & Technology, Faculty of Computer Science & Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Nor Badrul Anuar

    (Department of Computer System & Technology, Faculty of Computer Science & Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Riyadh Mehdi

    (Department of Information Technology, College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates)

  • Ahmad Firdaus

    (Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Malaysia)

  • Ainin Sulaiman

    (Universiti Malaya Halal Research Centre, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

The COVID-19 pandemic introduced unprecedented challenges for people and governments. Vaccines are an available solution to this pandemic. Recipients of the vaccines are of different ages, gender, and religion. Muslims follow specific Islamic guidelines that prohibit them from taking a vaccine with certain ingredients. This study aims at analyzing Facebook and Twitter data to understand the discourse related to halal vaccines using aspect-based sentiment analysis and text emotion analysis. We searched for the term “halal vaccine” and limited the timeline to the period between 1 January 2020, and 30 April 2021, and collected 6037 tweets and 3918 Facebook posts. We performed data preprocessing on tweets and Facebook posts and built the Latent Dirichlet Allocation (LDA) model to identify topics. Calculating the sentiment analysis for each topic was the next step. Finally, this study further investigates emotions in the data using the National Research Council of Canada Emotion Lexicon. Our analysis identified four topics in each of the Twitter dataset and Facebook dataset. Two topics of “COVID-19 vaccine” and “halal vaccine” are shared between the two datasets. The other two topics in tweets are “halal certificate” and “must halal”, while “sinovac vaccine” and “ulema council” are two other topics in the Facebook dataset. The sentiment analysis shows that the sentiment toward halal vaccine is mostly neutral in Twitter data, whereas it is positive in Facebook data. The emotion analysis indicates that trust is the most present emotion among the top three emotions in both datasets, followed by anticipation and fear.

Suggested Citation

  • Ali Feizollah & Nor Badrul Anuar & Riyadh Mehdi & Ahmad Firdaus & Ainin Sulaiman, 2022. "Understanding COVID-19 Halal Vaccination Discourse on Facebook and Twitter Using Aspect-Based Sentiment Analysis and Text Emotion Analysis," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6269-:d:820869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/6269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/6269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Veronica Guerrieri & Guido Lorenzoni & Ludwig Straub & Iván Werning, 2022. "Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?," American Economic Review, American Economic Association, vol. 112(5), pages 1437-1474, May.
    2. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowen Zhang & Jinping Lin & Man Luo & Changxian Zeng & Jiajia Feng & Meiqi Zhou & Fuying Deng, 2022. "Changes in Public Sentiment under the Background of Major Emergencies—Taking the Shanghai Epidemic as an Example," IJERPH, MDPI, vol. 19(19), pages 1-20, October.
    2. La Ode Nazaruddin & Balázs Gyenge & Maria Fekete-Farkas & Zoltán Lakner, 2023. "The Future Direction of Halal Food Additive and Ingredient Research in Economics and Business: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(7), pages 1-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    2. Mukoyama, Toshihiko, 2021. "MIT shocks imply market incompleteness," Economics Letters, Elsevier, vol. 198(C).
    3. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    4. George, Ammu & Li, Changtai & Lim, Jing Zhi & Xie, Taojun, 2021. "From SARS to COVID-19: The evolving role of China-ASEAN production network," Economic Modelling, Elsevier, vol. 101(C).
    5. Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021. "Studying Information Acquisition in the Field: A Practical Guide and Review," CEBI working paper series 21-15, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    6. Marco Bottone & Cristina Conflitti & Marianna Riggi & Alex Tagliabracci, 2021. "Firms' inflation expectations and pricing strategies during Covid-19," Questioni di Economia e Finanza (Occasional Papers) 619, Bank of Italy, Economic Research and International Relations Area.
    7. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    8. Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
    9. Charles A.E. Goodhart & Dimitrios P. Tsomocos & Xuan Wang, 2023. "Support for small businesses amid COVID‐19," Economica, London School of Economics and Political Science, vol. 90(358), pages 612-652, April.
    10. David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
    11. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    12. Ginters Bušs & Patrick Grüning, 2023. "Fiscal DSGE model for Latvia," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 23(1), pages 2173915-217.
    13. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    14. Gottlieb Charles & Grobovšek Jan & Poschke Markus & Saltiel Fernando, 2022. "Lockdown Accounting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 197-210, January.
    15. Graham, James & Ozbilgin, Murat, 2021. "Age, industry, and unemployment risk during a pandemic lockdown," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    16. C. Douglas Swearingen & Joseph T. Ripberger, 2014. "Google Insights and U.S. Senate Elections: Does Search Traffic Provide a Valid Measure of Public Attention to Political Candidates?," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 882-893, September.
    17. Carlos Madeira, 2022. "The double impact of deep social unrest and a pandemic: Evidence from Chile," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 135-171, February.
    18. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6269-:d:820869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.