IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2021i1p245-d711576.html
   My bibliography  Save this article

Habitat Segregation Patterns of Container Breeding Mosquitos: The Role of Urban Heat Islands, Vegetation Cover, and Income Disparity in Cemeteries of New Orleans

Author

Listed:
  • Rebeca de Jesús Crespo

    (Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA)

  • Rachel Elba Rogers

    (Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA)

Abstract

Aedes aegypti and Aedes albopictus are important pathogen-carrying vectors that broadly exhibit similar habitat suitability, but that differ at fine spatial scales in terms of competitive advantage and tolerance to urban driven environmental parameters. This study evaluated how spatial and temporal patterns drive the assemblages of these competing species in cemeteries of New Orleans, LA, applying indicators of climatic variability, vegetation, and heat that may drive habitat selection at multiple scales. We found that Ae. aegypti was well predicted by urban heat islands (UHI) at the cemetery scale and by canopy cover directly above the cemetery vase. As predicted, UHI positively correlate to Ae. aegypti , but contrary to predictions, Ae. aegypti , was more often found under the canopy of trees in high heat cemeteries. Ae. albopictus was most often found in low heat cemeteries, but this relationship was not statistically significant, and their overall abundances in the city were lower than Ae. aegypti . Culex quinquefasciatus , another important disease vector, was also an abundant mosquito species during the sampling year, but we found that it was temporally segregated from Aedes species, showing a negative association to the climatic variables of maximum and minimum temperature, and these factors positively correlated to its more direct competitor Ae. albopictus . These findings help us understand the mechanism by which these three important vectors segregate both spatially and temporally across the city. Our study found that UHI at the cemetery scale was highly predictive of Ae. aegypti and strongly correlated to income level, with low-income cemeteries having higher UHI levels. Therefore, the effect of excessive heat, and the proliferation of the highly competent mosquito vector, Ae. aegypti , may represent an unequal disease burden for low-income neighborhoods of New Orleans that should be explored further. Our study highlights the importance of considering socioeconomic aspects as indirectly shaping spatial segregation dynamics of urban mosquito species.

Suggested Citation

  • Rebeca de Jesús Crespo & Rachel Elba Rogers, 2021. "Habitat Segregation Patterns of Container Breeding Mosquitos: The Role of Urban Heat Islands, Vegetation Cover, and Income Disparity in Cemeteries of New Orleans," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2021:i:1:p:245-:d:711576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/1/245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/1/245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angel Hsu & Glenn Sheriff & Tirthankar Chakraborty & Diego Manya, 2021. "Disproportionate exposure to urban heat island intensity across major US cities," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Shannon L. LaDeau & Paul T. Leisnham & Dawn Biehler & Danielle Bodner, 2013. "Higher Mosquito Production in Low-Income Neighborhoods of Baltimore and Washington, DC: Understanding Ecological Drivers and Mosquito-Borne Disease Risk in Temperate Cities," IJERPH, MDPI, vol. 10(4), pages 1-22, April.
    4. Shanahan, D.F. & Lin, B.B. & Bush, R. & Gaston, K.J. & Dean, J.H. & Barber, E. & Fuller, R.A., 2015. "Toward improved public health outcomes from urban nature," American Journal of Public Health, American Public Health Association, vol. 105(3), pages 470-477.
    5. Brian Becker & Paul T. Leisnham & Shannon L. LaDeau, 2014. "A Tale of Two City Blocks: Differences in Immature and Adult Mosquito Abundances between Socioeconomically Different Urban Blocks in Baltimore (Maryland, USA)," IJERPH, MDPI, vol. 11(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebeca de Jesús Crespo & Madison Harrison & Rachel Rogers & Randy Vaeth, 2021. "Mosquito Vector Production across Socio-Economic Divides in Baton Rouge, Louisiana," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    2. Ari Whiteman & Eric Delmelle & Tyler Rapp & Shi Chen & Gang Chen & Michael Dulin, 2018. "A Novel Sampling Method to Measure Socioeconomic Drivers of Aedes albopictus Distribution in Mecklenburg County, North Carolina," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    3. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    4. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    5. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    6. Noa Levin, 2023. "Book review essay: City, Climate and Architecture; Coping with Urban Climates," Urban Studies, Urban Studies Journal Limited, vol. 60(13), pages 2725-2730, October.
    7. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    9. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    10. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Charlie M. Shackleton & Patrick T. Hurley & Annika C. Dahlberg & Marla R. Emery & Harini Nagendra, 2017. "Urban Foraging: A Ubiquitous Human Practice Overlooked by Urban Planners, Policy, and Research," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    12. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    13. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    14. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    15. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    17. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    19. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2021:i:1:p:245-:d:711576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.