IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp866-875.html
   My bibliography  Save this article

China's urban residential carbon emission and energy efficiency policy

Author

Listed:
  • Jiang, Jinhe

Abstract

With China's urbanization, issues relating to emission reduction of buildings have become more prominent. Based on the latest data, we estimate total area of China's buildings, total housing area, and residential elevator stock. And also, we estimate energy consumption and carbon emission from the fossil fuel during building operation phase. Two index decomposition analysis on changes of urban residential carbon emissions and emissions intensity have been applied. The major findings of the study are: firstly, there has been a significant shift from primary energy consumption to electricity and heat in urban residential during the periods of 1996–2012, and the proportion of direct CO2 emission to residential emission declined. Secondly, residential energy intensity, per capita housing area, total number of households are the main driving factors affecting the change in carbon emissions, with contribution rates of −39%, 77%, 67% respectively, and the decline of energy intensity is the most important factor of decreasing carbon intensity (contribution rate of 89%). Thirdly, reduction of carbon intensity is conducive to the decline of CO2 and decrease in emission intensity of urban residential. Residential energy efficiency policy lessons learned from rethink of economic and social policies during the study period were concluded finally.

Suggested Citation

  • Jiang, Jinhe, 2016. "China's urban residential carbon emission and energy efficiency policy," Energy, Elsevier, vol. 109(C), pages 866-875.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:866-875
    DOI: 10.1016/j.energy.2016.05.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216306776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. CHEN Shiyi, 2009. "Engine or drag: Can high energy consumption and CO2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 4(4), pages 548-571, December.
    2. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    2. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    3. Garg, Amit & Maheshwari, Jyoti & Shukla, P.R. & Rawal, Rajan, 2017. "Energy appliance transformation in commercial buildings in India under alternate policy scenarios," Energy, Elsevier, vol. 140(P1), pages 952-965.
    4. Yamei Chen & Lu Jiang, 2022. "Influencing Factors of Direct Carbon Emissions of Households in Urban Villages in Guangzhou, China," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    5. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    6. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    7. Liu, Xiaorui & Sun, Tao & Feng, Qiang & Zhang, Di, 2020. "Dynamic nonlinear influence of urbanization on China’s electricity consumption: Evidence from dynamic economic growth threshold effect," Energy, Elsevier, vol. 196(C).
    8. Ming, Zeng & Ping, Zhang & Shunkun, Yu & Hui, Liu, 2017. "Overall review of the overcapacity situation of China’s thermal power industry: Status quo, policy analysis and suggestions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 768-774.
    9. Zhixing Li & Mimi Tian & Yafei Zhao & Zhao Zhang & Yuxi Ying, 2021. "Development of an Integrated Performance Design Platform for Residential Buildings Based on Climate Adaptability," Energies, MDPI, vol. 14(24), pages 1-44, December.
    10. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    11. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    12. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    13. Peiqi Xu & Ling Shao & Zihao Geng & Manli Guo & Zijun Wei & Zi Wu, 2019. "Consumption-Based Carbon Emissions of Tianjin Based on Multi-Scale Input–Output Analysis," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    14. Petrović, Predrag & Filipović, Sanja & Radovanović, Mirjana, 2018. "Underlying causal factors of the European Union energy intensity: Econometric evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 216-227.
    15. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    16. Schach, Michael & Madlener, Reinhard, 2018. "Impacts of an ice-free Northeast Passage on LNG markets and geopolitics," Energy Policy, Elsevier, vol. 122(C), pages 438-448.
    17. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    18. Ding, Yang & Li, Feng, 2017. "Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China's provincial regions," Energy, Elsevier, vol. 125(C), pages 533-542.
    19. Jincai Zhao & Qianqian Liu, 2021. "Examining the Driving Factors of Urban Residential Carbon Intensity Using the LMDI Method: Evidence from China’s County-Level Cities," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
    20. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    21. Long, Yin & Dong, Liang & Yoshida, Yoshikuni & Li, Zhaoling, 2018. "Evaluation of energy-related household carbon footprints in metropolitan areas of Japan," Ecological Modelling, Elsevier, vol. 377(C), pages 16-25.
    22. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    23. Viktor Koval & Viktoriia Khaustova & Stella Lippolis & Olha Ilyash & Tetiana Salashenko & Piotr Olczak, 2023. "Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis," Energies, MDPI, vol. 16(14), pages 1-22, July.
    24. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    25. Li, Rui & Liu, Qiqi & Cai, Weiguang & Liu, Yuan & Yu, Yanhui & Zhang, Yihao, 2023. "Echelon peaking path of China's provincial building carbon emissions: Considering peak and time constraints," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    3. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    4. Ronald E. Miller & Umed Temurshoev, 2017. "Output Upstreamness and Input Downstreamness of Industries/Countries in World Production," International Regional Science Review, , vol. 40(5), pages 443-475, September.
    5. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    6. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
    7. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    8. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    10. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    11. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    12. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    13. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    14. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    15. Congxin Li & Xu Zhang, 2022. "The Influencing Mechanisms on Global Industrial Value Chains Embedded in Trade Implied Carbon Emissions from a Higher-Order Networks Perspective," Sustainability, MDPI, vol. 14(22), pages 1-38, November.
    16. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    17. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    18. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    19. Kamel Louhichi & Aymeric Ricome & Sergio Gomez y Paloma, 2022. "Impacts of agricultural taxation in Sub‐Saharan Africa: Insights from agricultural produce cess in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 671-686, September.
    20. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:866-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.