IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2734-d512884.html
   My bibliography  Save this article

Exposure to Perfluoroalkyl Substances and Mortality for COVID-19: A Spatial Ecological Analysis in the Veneto Region (Italy)

Author

Listed:
  • Dolores Catelan

    (Department of Statistics, Computer Science, Applications ‘G. Parenti’ (DiSIA), University of Florence, 50134 Firenze, Italy)

  • Annibale Biggeri

    (Department of Statistics, Computer Science, Applications ‘G. Parenti’ (DiSIA), University of Florence, 50134 Firenze, Italy)

  • Francesca Russo

    (Regional Directorate of Prevention, Food Safety, Veterinary Public Health, Regione del Veneto, 30123 Venice, Italy)

  • Dario Gregori

    (Unit of Biostatistics, Epidemiology and Public Health, Department of Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy)

  • Gisella Pitter

    (Screening and Health Impact Assessment Unit, Azienda Zero, Regione del Veneto, 35131 Padova, Italy)

  • Filippo Da Re

    (Regional Directorate of Prevention, Food Safety, Veterinary Public Health, Regione del Veneto, 30123 Venice, Italy)

  • Tony Fletcher

    (Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK)

  • Cristina Canova

    (Unit of Biostatistics, Epidemiology and Public Health, Department of Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy)

Abstract

Background: In the context of the COVID-19 pandemic, there is interest in assessing if per- and polyfluoroalkyl substances (PFAS) exposures are associated with any increased risk of COVID-19 or its severity, given the evidence of immunosuppression by some PFAS. The objective of this paper is to evaluate at the ecological level if a large area (Red Zone) of the Veneto Region, where residents were exposed for decades to drinking water contaminated by PFAS, showed higher mortality for COVID-19 than the rest of the region. Methods: We fitted a Bayesian ecological regression model with spatially and not spatially structured random components on COVID-19 mortality at the municipality level (period between 21 February and 15 April 2020). The model included education score, background all-cause mortality (for the years 2015–2019), and an indicator for the Red Zone. The two random components are intended to adjust for potential hidden confounders. Results: The COVID-19 crude mortality rate ratio for the Red Zone was 1.55 (90% Confidence Interval 1.25; 1.92). From the Bayesian ecological regression model adjusted for education level and baseline all-cause mortality, the rate ratio for the Red Zone was 1.60 (90% Credibility Interval 0.94; 2.51). Conclusion: In conclusion, we observed a higher mortality risk for COVID-19 in a population heavily exposed to PFAS, which was possibly explained by PFAS immunosuppression, bioaccumulation in lung tissue, or pre-existing disease being related to PFAS.

Suggested Citation

  • Dolores Catelan & Annibale Biggeri & Francesca Russo & Dario Gregori & Gisella Pitter & Filippo Da Re & Tony Fletcher & Cristina Canova, 2021. "Exposure to Perfluoroalkyl Substances and Mortality for COVID-19: A Spatial Ecological Analysis in the Veneto Region (Italy)," IJERPH, MDPI, vol. 18(5), pages 1-11, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2734-:d:512884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christel Nielsen & Anna Jöud, 2021. "Susceptibility to COVID-19 after High Exposure to Perfluoroalkyl Substances from Contaminated Drinking Water: An Ecological Study from Ronneby, Sweden," IJERPH, MDPI, vol. 18(20), pages 1-8, October.
    2. Zygmunt F. Dembek & Robert A. Lordo, 2022. "Influence of Perfluoroalkyl Substances on Occurrence of Coronavirus Disease 2019," IJERPH, MDPI, vol. 19(9), pages 1-12, April.
    3. Francesco Jacopo Pintus, 2023. "Valuing drinking water quality after a PFAS contamination event: results from a meta-analysis benefit transfer," "Marco Fanno" Working Papers 0308, Dipartimento di Scienze Economiche "Marco Fanno".
    4. Marialuisa Menegatto & Adriano Zamperini, 2024. "Contamination of Perfluoroalkyl Substances and Environmental Fight for Safe and Health: The MammeNoPfas Movement as Epistemic Community," Social Sciences, MDPI, vol. 13(10), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    3. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    4. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    5. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    6. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    7. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    8. Louise Choo & Stephen G. Walker, 2008. "A new approach to investigating spatial variations of disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 395-405, April.
    9. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    10. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    11. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    12. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    13. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    14. Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
    15. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    16. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    17. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    18. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    19. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    20. Julien Riou & Anthony Hauser & Anna Fesser & Christian L. Althaus & Matthias Egger & Garyfallos Konstantinoudis, 2023. "Direct and indirect effects of the COVID-19 pandemic on mortality in Switzerland," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2734-:d:512884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.