IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1505-d493859.html
   My bibliography  Save this article

The Role of Societal Aspects in the Formation of Official COVID-19 Reports: A Data-Driven Analysis

Author

Listed:
  • Marcell Tamás Kurbucz

    (Department of Quantitative Methods, Faculty of Business and Economics, University of Pannonia, Egyetem Street 10, H-8200 Veszprém, Hungary
    Wigner Research Centre for Physics, Department of Computational Sciences, Konkoly-Thege Miklós Street 29-33, H-1121 Budapest, Hungary
    Research Centre of Faculty of Business and Economics, University of Pannonia, Egyetem Street 10, H-8200 Veszprém, Hungary
    These authors contributed equally to this work.)

  • Attila Imre Katona

    (Department of Quantitative Methods, Faculty of Business and Economics, University of Pannonia, Egyetem Street 10, H-8200 Veszprém, Hungary
    These authors contributed equally to this work.)

  • Zoltán Lantos

    (Health Experience Institue, Közraktár Street 30-32, H-1093 Budapest, Hungary
    Institute of Advanced Studies (iASK), Chernel Street 14., H-9730 Kőszeg, Hungary
    These authors contributed equally to this work.)

  • Zsolt Tibor Kosztyán

    (Department of Quantitative Methods, Faculty of Business and Economics, University of Pannonia, Egyetem Street 10, H-8200 Veszprém, Hungary
    Research Centre of Faculty of Business and Economics, University of Pannonia, Egyetem Street 10, H-8200 Veszprém, Hungary
    Institute of Advanced Studies (iASK), Chernel Street 14., H-9730 Kőszeg, Hungary
    MTA-PE Budapest Ranking Research Group, Egyetem Street 10., H-8200 Veszprém, Hungary)

Abstract

This paper investigates the role of socioeconomic considerations in the formation of official COVID-19 reports. To this end, we employ a dataset that contains 1159 pre-processed indicators from the World Bank Group GovData360 and TCdata360 platforms and an additional 8 COVID-19 variables generated based on reports from 138 countries. During the analysis, a rank-correlation-based complex method is used to identify the time- and space-varying relations between pandemic variables and the main topics of World Bank Group platforms. The results not only draw attention to the importance of factors such as air traffic, tourism, and corruption in report formation but also support further discipline-specific research by mapping and monitoring a wide range of such relationships. To this end, a source code written in R language is attached that allows for the customization of the analysis and provides up-to-date results.

Suggested Citation

  • Marcell Tamás Kurbucz & Attila Imre Katona & Zoltán Lantos & Zsolt Tibor Kosztyán, 2021. "The Role of Societal Aspects in the Formation of Official COVID-19 Reports: A Data-Driven Analysis," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1505-:d:493859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    2. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    3. Laszlo Gadar & Zsolt T. Kosztyan & Janos Abonyi, 2018. "The Settlement Structure Is Reflected in Personal Investments: Distance-Dependent Network Modularity-Based Measurement of Regional Attractiveness," Complexity, Hindawi, vol. 2018, pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edit Kővári & Katalin Formádi & Zsuzsanna Banász, 2023. "The Green Attitude of Four European Capitals of Culture’s Youth," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    2. Wu, Yan & Yang, Yong & Mickiewicz, Tomasz, 2023. "Corruption, the digital sectors, and the profitability of foreign subsidiaries in emerging markets," Journal of Business Research, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    5. Pau Fonseca i Casas & Joan Garcia i Subirana & Víctor García i Carrasco & Xavier Pi i Palomés, 2021. "SARS-CoV-2 Spread Forecast Dynamic Model Validation through Digital Twin Approach, Catalonia Case Study," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    6. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    8. Stanislav Nagy & Houyem Demni & Davide Buttarazzi & Giovanni C. Porzio, 2024. "Theory of angular depth for classification of directional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 627-662, September.
    9. Mati, Sagiru, 2021. "Do as your neighbours do? Assessing the impact of lockdown and reopening on the active COVID-19 cases in Nigeria," Social Science & Medicine, Elsevier, vol. 270(C).
    10. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    13. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    14. Musa Ganaka Kubi & Son-Allah Mallaka Philemon & Olope Ganiu Ibrahim, 2020. "Forecasting the Confirmed Cases of COVID-19 in Selected West African Countries Using ARIMA Model Technique," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 5(8), pages 141-144, August.
    15. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    16. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    17. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    18. Masud M A & Md Hamidul Islam & Khondaker A. Mamun & Byul Nim Kim & Sangil Kim, 2020. "COVID-19 Transmission: Bangladesh Perspective," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    19. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    20. Marco Gribaudo & Mauro Iacono & Daniele Manini, 2021. "COVID-19 Spatial Diffusion: A Markovian Agent-Based Model," Mathematics, MDPI, vol. 9(5), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1505-:d:493859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.