IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i2p675-d480540.html
   My bibliography  Save this article

Substantial Nitrogen Oxide Pollution Is Embodied in the Bilateral Trade between China and the European Union

Author

Listed:
  • Yan Li

    (Business School, Shandong University, Weihai 264209, China)

  • Yigang Wei

    (School of Economics and Management, Beihang University, Beijing 100191, China
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations, Beijing 100191, China)

  • Xueqing Wang

    (School of Management and Economics, Tianjin University, Tianjin 300072, China)

  • Hanxiao Xu

    (School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China)

Abstract

Against the backdrop of globalization and trade facilitation, the products consumed by a country are more and more relying on the importation of those products from other countries. Therefore, the pollutant emissions of products associated are transferred from consuming countries to exporting countries, which significantly changes the spatial distribution of global pollutant emissions. The objective of this research is to analyse the embodied nitrogen oxide (NO x ) emissions in the trading process between China and the European Union (EU) and to further trace the interindustry and intercountry transfer paths. This study constructs a multiregional input–output (MRIO) model based on the latest EORA global supply chain database. The MRIO model quantitatively analyses the total NO x emissions from the production and consumption ends of China and the EU from 1995 to 2014. Important findings are derived from the empirical results as follows. (1) In 2014, China’s production end emissions were 1824.38 kilotons higher than those of the consumption end. By contrast, the situation in the EU was the opposite, i.e., production end emissions were 1711.97 kilotons lower than those of the consumption end. (2) In the trade between China and the EU, the EU is a net importer of embodied NO x , and China is a net exporter of embodied NO x . In 2014, 2.55% of China’s domestic NO x emissions were transferred to the EU in China-EU trade, accounting for 2.75% of China’s domestic consumption demand. (3) In 2014, Electricity, Gas and Water (397.75 kilotons), Transport (343.55 kilotons), Petroleum, Chemical and non-metallic Products (95.9 kilotons), Metal Products (49.88 kilotons), Textiles and Apparel (26.19 kilotons), are among the industries with the most embodied NOx emissions from China’s net exports during its two-way trade with the EU. (4) In the bilateral trade between the EU and China, many countries are in the state of embodied NO x net import. The top three net importers in 2014 were Germany (169.24 kilotons), Britain (128.11 kilotons), France (103.21 kilotons).

Suggested Citation

  • Yan Li & Yigang Wei & Xueqing Wang & Hanxiao Xu, 2021. "Substantial Nitrogen Oxide Pollution Is Embodied in the Bilateral Trade between China and the European Union," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:675-:d:480540
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/2/675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/2/675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhangqi Zhong & Xu Zhang & Wei Shao, 2019. "Measuring global energy-related sulfur oxides emissions embodied in trade: a multi-regional and multi-sectoral analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 401-418, January.
    2. Yiyi Ju, 2017. "Tracking the PM2.5 inventories embodied in the trade among China, Japan and Korea," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-16, December.
    3. Li, Yan & Chevallier, Julien & Wei, Yigang & Li, Jing, 2020. "Identifying price bubbles in the US, European and Asian natural gas market: Evidence from a GSADF test approach," Energy Economics, Elsevier, vol. 87(C).
    4. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2017. "Household carbon footprints in the Baltic States: A global multi-regional input–output analysis from 1995 to 2011," Applied Energy, Elsevier, vol. 189(C), pages 780-788.
    5. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    6. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    7. Shan, Siqing & Peng, Jing & Wei, Yigang, 2021. "Environmental Sustainability assessment 2.0: The value of social media data for determining the emotional responses of people to river pollution—A case study of Weibo (Chinese Twitter)," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    8. Yan Li & Yigang Wei & Zhang Dong, 2020. "Will China Achieve Its Ambitious Goal?—Forecasting the CO 2 Emission Intensity of China towards 2030," Energies, MDPI, vol. 13(11), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    2. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    3. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    4. Min Huang & Yimin Chen & Yuanying Zhang, 2018. "Assessing Carbon Footprint and Inter-Regional Carbon Transfer in China Based on a Multi-Regional Input-Output Model," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    5. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    6. Hao Chen & Erdan Wang & Nuo Wang & Tao Song, 2023. "Research on Embodied Carbon Transfer Measurement and Carbon Compensation among Regions in China," IJERPH, MDPI, vol. 20(3), pages 1-20, February.
    7. Xi Chen & Yingying Zhen & Zhanming Chen, 2023. "Household Carbon Footprint Characteristics and Driving Factors: A Global Comparison Based on a Dynamic Input–Output Model," Energies, MDPI, vol. 16(9), pages 1-18, May.
    8. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    9. Wen, Wen & Feng, Cuiyang & Zhou, Hao & Zhang, Li & Wu, Xiaohui & Qi, Jianchuan & Yang, Xuechun & Liang, Yuhan, 2021. "Critical provincial transmission sectors for carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Arce, Guadalupe & López, Luis Antonio & Guan, Dabo, 2016. "Carbon emissions embodied in international trade: The post-China era," Applied Energy, Elsevier, vol. 184(C), pages 1063-1072.
    11. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    12. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    13. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    14. Simon Schulte & Arthur Jakobs & Stefan Pauliuk, 2021. "Relaxing the import proportionality assumption in multi-regional input–output modelling," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-21, December.
    15. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    16. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    17. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    18. Benedikt Heid & Frank Stähler, 2024. "Disentangling Frictions Across the World: Markups Versus Trade Costs," CESifo Working Paper Series 11420, CESifo.
    19. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    20. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:675-:d:480540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.