IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9837-d638319.html
   My bibliography  Save this article

Antimicrobial Resistance in Rural Settings in Latin America: A Scoping Review with a One Health Lens

Author

Listed:
  • Maria Luisa Medina-Pizzali

    (School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres, Lima 31, Peru)

  • Stella M. Hartinger

    (School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres, Lima 31, Peru
    Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4057 Basel, Switzerland
    Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4051 Basel, Switzerland)

  • Gabriela Salmon-Mulanovich

    (School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres, Lima 31, Peru
    Institute for Earth, Nature and Energy at Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, San Miguel, Lima 32, Peru)

  • Anika Larson

    (School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres, Lima 31, Peru
    Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA)

  • Maribel Riveros

    (School of Medicine, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres, Lima 31, Peru)

  • Daniel Mäusezahl

    (Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4057 Basel, Switzerland
    Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4051 Basel, Switzerland)

Abstract

Antimicrobial resistance (AMR) in rural Latin America is not fully understood. The transmission pathways are partially known since research predominantly focuses on the urban hospital setting. The contribution to AMR from environmental factors is usually only mentioned in large-scale animal production. To understand the state of the literature on AMR in rural LA, we carried out a scoping review using the One Health (OH) perspective. OH recognises the concomitant contributions and interconnectedness of humans, animal, and the environment, thus, we used the OH perspective to select those articles adopting a holistic view of the problem. We searched original articles in English, Spanish, and Portuguese in four peer-reviewed databases and included 21 publications in the analysis. We charted data on bibliometrics, design, data collection sources, and instruments. We identified the human, animal, and environmental contributions to AMR in rural locations, and information gaps on AMR transmission routes and AMR drivers. Intensive and non-intensive animal production systems and agricultural practices were the most frequently found human contributions to AMR. Poultry, swine, cattle, and fish were the most frequent livestock mentioned as sources of AMR bacteria. Animal carriage and/or transfer of AMR determinants or bacteria was recognised as the primary contribution of livestock to the problem, while water, soil, and farming were predominant environmental contributions. We found that only 1 article out of 21 considered the OH approach as a framework for their sampling scheme, whereas 5 out 21 discussed all the three OH components. There were hardly any descriptions of humans or human waste as reservoirs for AMR in rural locations, and rural health centres or hospitals and wildlife were not represented. No studies identified mining as an anthropogenic activity driving AMR. More OH-oriented studies, with emphasis on molecular approaches—for identification and comparison of AMR genes—are sorely needed to understand better the existence of a network of interconnected transmission routes in rural Latin America and provide efficient strategies to prevent further AMR emergence.

Suggested Citation

  • Maria Luisa Medina-Pizzali & Stella M. Hartinger & Gabriela Salmon-Mulanovich & Anika Larson & Maribel Riveros & Daniel Mäusezahl, 2021. "Antimicrobial Resistance in Rural Settings in Latin America: A Scoping Review with a One Health Lens," IJERPH, MDPI, vol. 18(18), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9837-:d:638319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muibat Omotola Fashola & Veronica Mpode Ngole-Jeme & Olubukola Oluranti Babalola, 2016. "Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance," IJERPH, MDPI, vol. 13(11), pages 1-20, October.
    2. Stella M. Hartinger & Maria Luisa Medina-Pizzali & Gabriela Salmon-Mulanovich & Anika J. Larson & María Pinedo-Bardales & Hector Verastegui & Maribel Riberos & Daniel Mäusezahl, 2021. "Antimicrobial Resistance in Humans, Animals, Water and Household Environs in Rural Andean Peru: Exploring Dissemination Pathways through the One Health Lens," IJERPH, MDPI, vol. 18(9), pages 1-16, April.
    3. Erica C. Pehrsson & Pablo Tsukayama & Sanket Patel & Melissa Mejía-Bautista & Giordano Sosa-Soto & Karla M. Navarrete & Maritza Calderon & Lilia Cabrera & William Hoyos-Arango & M. Teresita Bertoli & , 2016. "Interconnected microbiomes and resistomes in low-income human habitats," Nature, Nature, vol. 533(7602), pages 212-216, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Boolchandani & Kevin S. Blake & Drake H. Tilley & Miguel M. Cabada & Drew J. Schwartz & Sanket Patel & Maria Luisa Morales & Rina Meza & Giselle Soto & Sandra D. Isidean & Chad K. Porter & Mark, 2022. "Impact of international travel and diarrhea on gut microbiome and resistome dynamics," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Nurfitri Abdul Gafur & Masayuki Sakakibara & Satoru Komatsu & Sakae Sano & Koichiro Sera, 2022. "Environmental Survey of the Distribution and Metal Contents of Pteris vittata in Arsenic–Lead–Mercury-Contaminated Gold Mining Areas along the Bone River in Gorontalo Province, Indonesia," IJERPH, MDPI, vol. 19(1), pages 1-13, January.
    3. Ayansina Segun Ayangbenro & Olubukola Oluranti Babalola, 2017. "A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents," IJERPH, MDPI, vol. 14(1), pages 1-16, January.
    4. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Shaojun Pan & Chengkai Zhu & Xing-Ming Zhao & Luis Pedro Coelho, 2022. "A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Min Yang & Youning Xu & Hailing Ke & Huaqing Chen, 2021. "Cumulative Effect and Content Variation of Toxic Trace Elements in Human Hair around Xiaoqinling Gold Mining Area, Northwestern China," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    7. Pedro Padilla González & Carlos Bautista-Capetillo & Antonio Ruiz-Canales & Julián González-Trinidad & Hugo Enrique Júnez-Ferreira & Ada Rebeca Contreras Rodríguez & Cruz Octavio Robles Rovelo, 2022. "Characterization of Scale Deposits in a Drinking Water Network in a Semi-Arid Region," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    8. Xuanji Li & Asker Brejnrod & Jonathan Thorsen & Trine Zachariasen & Urvish Trivedi & Jakob Russel & Gisle Alberg Vestergaard & Jakob Stokholm & Morten Arendt Rasmussen & Søren Johannes Sørensen, 2023. "Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Peter J. Diebold & Matthew W. Rhee & Qiaojuan Shi & Nguyen Vinh Trung & Fayaz Umrani & Sheraz Ahmed & Vandana Kulkarni & Prasad Deshpande & Mallika Alexander & Ngo Hoa & Nicholas A. Christakis & Najee, 2023. "Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Sigal Leviatan & Saar Shoer & Daphna Rothschild & Maria Gorodetski & Eran Segal, 2022. "An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Uchenna Okereafor & Mamookho Makhatha & Lukhanyo Mekuto & Nkemdinma Uche-Okereafor & Tendani Sebola & Vuyo Mavumengwana, 2020. "Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health," IJERPH, MDPI, vol. 17(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9837-:d:638319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.