IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9787-d637389.html
   My bibliography  Save this article

Ground Reaction Force Differences between Bionic Shoes and Neutral Running Shoes in Recreational Male Runners before and after a 5 km Run

Author

Listed:
  • Xinyan Jiang

    (Faculty of Sports Science, Ningbo University, Ningbo 315211, China)

  • Huiyu Zhou

    (Faculty of Sports Science, Ningbo University, Ningbo 315211, China
    School of Health and Life Sciences, University of the West of Scotland, Scotland G72 0LH, UK)

  • Wenjing Quan

    (Faculty of Sports Science, Ningbo University, Ningbo 315211, China
    Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary)

  • Qiuli Hu

    (Faculty of Sports Science, Ningbo University, Ningbo 315211, China)

  • Julien S. Baker

    (Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health Hong Kong Baptist University, Hong Kong 999077, China)

  • Yaodong Gu

    (Faculty of Sports Science, Ningbo University, Ningbo 315211, China)

Abstract

Running-related injuries are common among runners. Recent studies in footwear have shown that designs of shoes can potentially affect sports performance and risk of injury. Bionic shoes combine the functions of barefoot running and foot protection and incorporate traditional unstable structures based on bionic science. The purpose of this study was to investigate ground reaction force (GRF) differences for a 5 km run and how bionic shoes affect GRFs. Sixteen male recreational runners volunteered to participate in this study and finished two 5 km running sessions (a neutral shoe session and a bionic shoe session). Two-way repeated-measures ANOVAs were performed to determine the differences in GRFs. In the analysis of the footwear conditions of runners, bionic shoes showed significant decreases in vertical impulse, peak propulsive force, propulsive impulse, and contact time, while the braking impulse and vertical instantaneous loading rate (VILR) increased significantly compared to the neutral shoes. Main effects for a 5 km run were also observed at vertical GRFs and anterior–posterior GRFs. The increases of peak vertical impact force, vertical average loading rate (VALR), VILR, peak braking force and braking impulse were observed in post-5 km running trials and a reduction in peak propulsive force and propulsive impulse. The interaction effects existed in VILR and contact time. The results suggest that bionic shoes may benefit runners with decreasing injury risk during running. The findings of the present study may help to understand the effects of footwear design during prolonged running, thereby providing valuable information for reducing the risk of running injuries.

Suggested Citation

  • Xinyan Jiang & Huiyu Zhou & Wenjing Quan & Qiuli Hu & Julien S. Baker & Yaodong Gu, 2021. "Ground Reaction Force Differences between Bionic Shoes and Neutral Running Shoes in Recreational Male Runners before and after a 5 km Run," IJERPH, MDPI, vol. 18(18), pages 1-12, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9787-:d:637389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel E. Lieberman & Madhusudhan Venkadesan & William A. Werbel & Adam I. Daoud & Susan D’Andrea & Irene S. Davis & Robert Ojiambo Mang’Eni & Yannis Pitsiladis, 2010. "Foot strike patterns and collision forces in habitually barefoot versus shod runners," Nature, Nature, vol. 463(7280), pages 531-535, January.
    2. Huiyu Zhou & Chaoyi Chen & Datao Xu & Ukadike Chris Ugbolue & Julien S. Baker & Yaodong Gu, 2021. "Biomechanical Characteristics between Bionic Shoes and Normal Shoes during the Drop-Landing Phase: A Pilot Study," IJERPH, MDPI, vol. 18(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Rubio-Peirotén & Felipe García-Pinillos & Diego Jaén-Carrillo & Antonio Cartón-Llorente & Ferrán Abat & Luis E. Roche-Seruendo, 2021. "Relationship between Connective Tissue Morphology and Lower-Limb Stiffness in Endurance Runners. A Prospective Study," IJERPH, MDPI, vol. 18(16), pages 1-10, August.
    2. Fengfeng Li & Ntwali Adrien & Yuhuan He, 2022. "Biomechanical Risks Associated with Foot and Ankle Injuries in Ballet Dancers: A Systematic Review," IJERPH, MDPI, vol. 19(8), pages 1-10, April.
    3. Chao-Fu Chen & Hui-Ju Wu & Chao Liu & Soun-Cheng Wang, 2022. "Kinematics Analysis of Male Runners via Forefoot and Rearfoot Strike Strategies: A Preliminary Study," IJERPH, MDPI, vol. 19(23), pages 1-10, November.
    4. Felipe García-Pinillos & Diego Jaén-Carrillo & Pedro Ángel Latorre-Román & Carles Escalona-Marfil & Víctor M. Soto-Hermoso & Carlos Lago-Fuentes & Silvia Pueyo-Villa & Irma Domínguez-Azpíroz & Luis E., 2021. "Does Arch Stiffness Influence Running Spatiotemporal Parameters? An Analysis of the Relationship between Influencing Factors on Running Performance," IJERPH, MDPI, vol. 18(5), pages 1-9, March.
    5. Andrigo Zaar & Eduardo Borba Neves & Abel Ilah Rouboa & Victor Machado Reis, 2017. "Determinative Factors in The Injury Incidence on Runners: Synthesis of Evidence “Injuries on Runners”," The Open Sports Sciences Journal, Bentham Open, vol. 10(1), pages 294-304, December.
    6. Ying-Jen Lai & Willy Chou & I-Hua Chu & Yu-Lin Wang & Yi-Jing Lin & Shihfan Jack Tu & Lan-Yuen Guo, 2020. "Will the Foot Strike Pattern Change at Different Running Speeds with or without Wearing Shoes?," IJERPH, MDPI, vol. 17(17), pages 1-9, August.
    7. Ana Marchena-Rodriguez & Ana Belen Ortega-Avila & Pablo Cervera-Garvi & David Cabello-Manrique & Gabriel Gijon-Nogueron, 2020. "Review of Terms and Definitions Used in Descriptions of Running Shoes," IJERPH, MDPI, vol. 17(10), pages 1-11, May.
    8. Ana Paula da Silva Azevedo & Bruno Mezêncio & Alberto Carlos Amadio & Julio Cerca Serrão, 2016. "16 Weeks of Progressive Barefoot Running Training Changes Impact Force and Muscle Activation in Habitual Shod Runners," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.
    9. Koji Nishida & Shota Hagio & Benio Kibushi & Toshio Moritani & Motoki Kouzaki, 2017. "Comparison of muscle synergies for running between different foot strike patterns," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-19, February.
    10. Christian Mitschke & Falk Zaumseil & Thomas L. Milani, 2017. "The influence of inertial sensor sampling frequency on the accuracy of measurement parameters in rearfoot running," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(14), pages 1502-1511, October.
    11. Niki M Stolwijk & Jacques Duysens & Jan Willem K Louwerens & Yvonne HM van de Ven & Noël LW Keijsers, 2013. "Flat Feet, Happy Feet? Comparison of the Dynamic Plantar Pressure Distribution and Static Medial Foot Geometry between Malawian and Dutch Adults," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    12. Patrick Devlieger & Jori De Coster, 2017. "On Footwear and Disability: A Dance of Animacy?," Societies, MDPI, vol. 7(2), pages 1-11, June.
    13. Yang Yang & Xini Zhang & Zhen Luo & Xi Wang & Dongqiang Ye & Weijie Fu, 2020. "Alterations in Running Biomechanics after 12 Week Gait Retraining with Minimalist Shoes," IJERPH, MDPI, vol. 17(3), pages 1-13, January.
    14. Elena Escamilla-Martínez & Beatriz Gómez-Martín & Lourdes María Fernández-Seguín & Alfonso Martínez-Nova & Juan Diego Pedrera-Zamorano & Raquel Sánchez-Rodríguez, 2020. "Longitudinal Analysis of Plantar Pressures with Wear of a Running Shoe," IJERPH, MDPI, vol. 17(5), pages 1-8, March.
    15. Enrico Santoro & Antonio Tessitore & Chiang Liu & Chi-Hsien Chen & Chutimon Khemtong & Mauro Mandorino & Yi-Hua Lee & Giancarlo Condello, 2021. "The Biomechanical Characterization of the Turning Phase during a 180° Change of Direction," IJERPH, MDPI, vol. 18(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9787-:d:637389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.