IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p7044-d586727.html
   My bibliography  Save this article

An Integrated Approach to Assess the Environmental Impacts of Large-Scale Gold Mining: The Nzema-Gold Mines in the Ellembelle District of Ghana as a Case Study

Author

Listed:
  • Dawuda Usman Kaku

    (School of Environment, Northeast Normal University, Changchun 130117, China)

  • Yonghong Cao

    (School of Environment, Northeast Normal University, Changchun 130117, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China)

  • Yousef Ahmed Al-Masnay

    (School of Environment, Northeast Normal University, Changchun 130117, China)

  • Jean Claude Nizeyimana

    (School of Environment, Northeast Normal University, Changchun 130117, China)

Abstract

The mining industry is a significant asset to the development of countries. Ghana, Africa’s second-largest gold producer, has benefited from gold mining as the sector generates about 90% of the country’s total exports. Just like all industries, mining is associated with benefits and risks to indigenes and the host environment. Small-scale miners are mostly accused in Ghana of being environmentally disruptive, due to their modes of operations. As a result, this paper seeks to assess the environmental impacts of large-scale gold mining with the Nzema Mines in Ellembelle as a case study. The study employs a double-phase mixed-method approach—a case study approach, consisting of site visitation, key informant interviews, questionnaires, and literature reviews, and the Normalized Difference Vegetation Index (NDVI) analysis method. The NDVI analysis shows that agricultural land reduced by −0.98%, while the bare area increases by 5.21% between the 2008 and 2015 periods. Our results show that forest reserves and bare area were reduced by −4.99% and −29%, respectively, while residential areas increased by 28.17% between 2015 and 2020. Vegetation, land, air, and water quality are highly threatened by large-scale mining in the area. Weak enforcement of mining policies, ineffective stakeholder institution collaborations, and limited community participation in decision-making processes were also noticed during the study. The authors conclude by giving recommendations to help enhance sustainable mining and ensure environmental sustainability in the district and beyond.

Suggested Citation

  • Dawuda Usman Kaku & Yonghong Cao & Yousef Ahmed Al-Masnay & Jean Claude Nizeyimana, 2021. "An Integrated Approach to Assess the Environmental Impacts of Large-Scale Gold Mining: The Nzema-Gold Mines in the Ellembelle District of Ghana as a Case Study," IJERPH, MDPI, vol. 18(13), pages 1-20, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:7044-:d:586727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/7044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/7044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Boafo & Sebastian Angzoorokuu Paalo & Senyo Dotsey, 2019. "Illicit Chinese Small-Scale Mining in Ghana: Beyond Institutional Weakness?," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    2. Jian Peng & Minli Zong & Yi'na Hu & Yanxu Liu & Jiansheng Wu, 2015. "Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China," Sustainability, MDPI, vol. 7(7), pages 1-23, June.
    3. Prince T. Mabey & Wei Li & Abu J. Sundufu & Akhtar H. Lashari, 2020. "Environmental Impacts: Local Perspectives of Selected Mining Edge Communities in Sierra Leone," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengye Zhang & Huiyu Zheng & Jun Li & Tingting Qin & Junting Guo & Menghao Du, 2022. "A Method for Identifying the Spatial Range of Mining Disturbance Based on Contribution Quantification and Significance Test," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
    2. Emmanuel Bosompem Boadi & Shaojun Chen & Ebenezer Impriam Amponsah & Ruth Appiah, 2022. "Antecedents of Residential Satisfaction in Resettlement Housing in Ellembelle: A PLS-SEM Approach," Sustainability, MDPI, vol. 14(18), pages 1-13, September.
    3. Junting Guo & Quansheng Li & Huizhen Xie & Jun Li & Linwei Qiao & Chengye Zhang & Guozhu Yang & Fei Wang, 2022. "Monitoring of Vegetation Disturbance and Restoration at the Dumping Sites of the Baorixile Open-Pit Mine Based on the LandTrendr Algorithm," IJERPH, MDPI, vol. 19(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hesam Dehghani & Marc Bascompta & Ali Asghar Khajevandi & Kiana Afshar Farnia, 2023. "A Mimic Model Approach for Impact Assessment of Mining Activities on Sustainable Development Indicators," Sustainability, MDPI, vol. 15(3), pages 1-15, February.
    2. Nwaila, Glen T. & Bourdeau, Julie E. & Zhang, Steven E. & Chipangamate, Nelson & Valodia, Imraan & Mahboob, Muhammad Ahsan & Lehohla, Thakaramahlaha & Shimaponda-Nawa, Mulundumina & Durrheim, Raymond , 2024. "A systematic framework for compilation of critical raw material lists and their importance for South Africa," Resources Policy, Elsevier, vol. 93(C).
    3. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    4. Collins R. Nunyonameh & Abdul-Gafaru Abdulai, 2023. "Understanding the discourse of the “Community” in community development in Ghana’s mining industry," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(1), pages 45-58, January.
    5. Zeng, Lijun & Guo, Jiaqi & Wang, Bingcheng & Lv, Jun & Wang, Qin, 2019. "Analyzing sustainability of Chinese coal cities using a decision tree modeling approach," Resources Policy, Elsevier, vol. 64(C).
    6. Arthur-Holmes, Francis & Ofosu, George, 2024. "Rethinking state-led formalisation of artisanal and small-scale mining (ASM): Towards mining licence categorisation, women empowerment and environmental sustainability," Resources Policy, Elsevier, vol. 93(C).
    7. Meirui Li & Baolei Zhang & Xiaobo Zhang & Shumin Zhang & Le Yin, 2023. "Exploring Spatio-Temporal Variations of Ecological Risk in the Yellow River Ecological Economic Belt Based on an Improved Landscape Index Method," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    8. Tian Wang & Xiaodong Chen & Xin Zheng & Yayan Lu & Fang Han & Zhaoping Yang, 2022. "Identification of Priority Conservation Areas for Natural Heritage Sites Integrating Landscape Ecological Risks and Ecosystem Services: A Case Study in the Bogda, China," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    9. Jian Gong & Jianxin Yang & Wenwu Tang, 2015. "Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China," IJERPH, MDPI, vol. 12(11), pages 1-24, November.
    10. Faith Osasumwen Olanrewaju & Segun Joshua & Adekunle Olanrewaju, 2020. "Natural Resources, Conflict and Security Challenges in Africa," India Quarterly: A Journal of International Affairs, , vol. 76(4), pages 552-568, December.
    11. Tao Yu & Anming Bao & Wenqiang Xu & Hao Guo & Liangliang Jiang & Guoxiong Zheng & Ye Yuan & Vincent NZABARINDA, 2019. "Exploring Variability in Landscape Ecological Risk and Quantifying Its Driving Factors in the Amu Darya Delta," IJERPH, MDPI, vol. 17(1), pages 1-21, December.
    12. Worlanyo, Adator Stephanie & Alhassan, Sikpaam Issaka & Jiangfeng, Li, 2022. "The impacts of gold mining on the welfare of local farmers in Asutifi-North District in Ghana: A quantitative and multi-dimensional approach," Resources Policy, Elsevier, vol. 75(C).
    13. Hui Wang, 2021. "Regional assessment of human-caused ecological risk in the Poyang Lake Eco-economic Zone using production–living–ecology analysis," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    14. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    15. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    16. Xueqing Wang & Zhongyi Ding & Shaoliang Zhang & Huping Hou & Zanxu Chen & Qinyu Wu, 2022. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    17. Shaoqing Wang & Yanling Zhao & He Ren & Shichao Zhu & Yunhui Yang, 2023. "Identification of Ecological Risk “Source-Sink” Landscape Functions of Resource-Based Region: A Case Study in Liaoning Province, China," Land, MDPI, vol. 12(10), pages 1-23, October.
    18. Alvin Camba, 2020. "The Sino‐centric Capital Export Regime: State‐backed and Flexible Capital in the Philippines," Development and Change, International Institute of Social Studies, vol. 51(4), pages 970-997, July.
    19. Yiping Liu & Chengpeng Lu & Jinhuang Mao & Jiaxing Pang & Zhiliang Liu & Muchen Hou, 2021. "Comprehensive Evaluation of the Importance of Ecological Land in Arid Hilly Cities in Northwest China: A Case Study of the Core Urban Area of Lanzhou," Land, MDPI, vol. 10(9), pages 1-18, September.
    20. Yun Liu & Weiheng Xu & Zehu Hong & Leiguang Wang & Guanglong Ou & Ning Lu, 2022. "Assessment of Spatial-Temporal Changes of Landscape Ecological Risk in Xishuangbanna, China from 1990 to 2019," Sustainability, MDPI, vol. 14(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:7044-:d:586727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.