IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6839-d582403.html
   My bibliography  Save this article

Virtual Fence System Based on IoT Paradigm to Prevent Occupational Accidents in the Construction Sector

Author

Listed:
  • María del Carmen Rey-Merchán

    (PhD Program Advanced Computing, Energy and Plasmas, University of Córdoba, 14071 Córdoba, Spain
    These authors contributed equally to this work.)

  • Jesús M. Gómez-de-Gabriel

    (System Engineering and Automation Department, University of Málaga, 29071 Málaga, Spain
    These authors contributed equally to this work.)

  • Antonio López-Arquillos

    (Economics and Business Management Department, University of Málaga, 29071 Málaga, Spain
    These authors contributed equally to this work.
    Current address: Departamento de Economía y Administración de Empresas, Escuela de Ingenierías Industriales, Universidad de Málaga, 29071 Málaga, Spain.)

  • Juan A. Fernández-Madrigal

    (System Engineering and Automation Department, University of Málaga, 29071 Málaga, Spain
    These authors contributed equally to this work.)

Abstract

Many occupational accidents in construction sites are caused by the intrusion of a worker into a hazardous area. Technological solutions based on RFID, BIM, or UWB can reduce accidents, but they still have some limitations.The aim of the current paper is to design and evaluate a new system of “virtual fences” based on Bluetooth Low-Energy (BLE) to avoid intrusions. First of all, the system was designed using a number of beacons, a Bayesian filter, a finite state machine, and an indicator. Secondly, its safety attributes were evaluated based on a scientific questionnaire by an expert panel following the staticized groups’ methodology. Results showed that the proposal is inexpensive and easy to integrate and configure. The selected experts evaluated positively all the attributes of the system, and provided valuable insights for further improvements. From the experts’ discussions, we concluded that successful adoption of this “virtual fence” system based on BLE beacons should consider the influence of factors such as cost savings, top management support, social acceptance, and compatibility and integration with existing systems, procedures, and company culture. In addition, legislation updates according to technical advances would help with successful adoption of any new safety system.

Suggested Citation

  • María del Carmen Rey-Merchán & Jesús M. Gómez-de-Gabriel & Antonio López-Arquillos & Juan A. Fernández-Madrigal, 2021. "Virtual Fence System Based on IoT Paradigm to Prevent Occupational Accidents in the Construction Sector," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6839-:d:582403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Gambatese & Matthew Hallowell, 2011. "Factors that influence the development and diffusion of technical innovations in the construction industry," Construction Management and Economics, Taylor & Francis Journals, vol. 29(5), pages 507-517.
    2. Mara Lombardi & Mario Fargnoli & Giuseppe Parise, 2019. "Risk Profiling from the European Statistics on Accidents at Work (ESAW) Accidents′ Databases: A Case Study in Construction Sites," IJERPH, MDPI, vol. 16(23), pages 1-22, November.
    3. Hyunsoo Kim & Sangwon Han, 2018. "Accuracy Improvement of Real-Time Location Tracking for Construction Workers," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    4. Waleed Umer & Mohsin K. Siddiqui, 2020. "Use of Ultra Wide Band Real-Time Location System on Construction Jobsites: Feasibility Study and Deployment Alternatives," IJERPH, MDPI, vol. 17(7), pages 1-25, March.
    5. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prommer, Lisa & Tiberius, Victor & Kraus, Sascha, 2020. "Exploring the future of startup leadership development," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    2. Bas Kolen & Matthijs Kok & Ira Helsloot & Bob Maaskant, 2013. "EvacuAid: A Probabilistic Model to Determine the Expected Loss of Life for Different Mass Evacuation Strategies During Flood Threats," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1312-1333, July.
    3. Meissner, Philip & Brands, Christian & Wulf, Torsten, 2017. "Quantifiying blind spots and weak signals in executive judgment: A structured integration of expert judgment into the scenario development process," International Journal of Forecasting, Elsevier, vol. 33(1), pages 244-253.
    4. Fabio Salamanca-Buentello & Mary V Seeman & Abdallah S Daar & Ross E G Upshur, 2020. "The ethical, social, and cultural dimensions of screening for mental health in children and adolescents of the developing world," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-25, August.
    5. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    6. Fatima Zahra Barrane & Gahima Egide Karuranga & Diane Poulin, 2018. "Technology Adoption and Diffusion: A New Application of the UTAUT Model," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-19, December.
    7. Heiskanen, Aleksi & Hurmekoski, Elias & Toppinen, Anne & Näyhä, Annukka, 2022. "Exploring the unknowns – State of the art in qualitative forest-based sector foresight research," Forest Policy and Economics, Elsevier, vol. 135(C).
    8. Lin, Tun & De Guzman, Franklin, 2007. "Tourism for pro-poor and sustainable growth: economic analysis of tourism projects," MPRA Paper 24994, University Library of Munich, Germany.
    9. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    10. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
    11. Philip Rogiers & Stijn Viaene & Jan Leysen, 2020. "The digital future of internal staffing: A vision for transformational electronic human resource management," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 182-196, October.
    12. Yaniv, Ilan, 2011. "Group diversity and decision quality: Amplification and attenuation of the framing effect," International Journal of Forecasting, Elsevier, vol. 27(1), pages 41-49.
    13. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    14. repec:nor:wpaper:2012005 is not listed on IDEAS
    15. Ngoy Kabemba S. & Chisumbe Sampa & Petere Gaida & Mwiya Balimu & Mwanaumo Erastus, 2023. "Factors Influencing Professional Indemnity Insurance Use in Construction Risk Management," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 11(1), pages 199-220, January.
    16. Frederico Fernandes Ávila & Regina C. Alvalá & Rodolfo M. Mendes & Diogo J. Amore, 2024. "Socio-geoenvironmental vulnerability index (SGeoVI) derived from hybrid modeling related to populations at-risk to landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8121-8151, July.
    17. van Asselt, E.D. & Meuwissen, M.P.M. & van Asseldonk, M.A.P.M. & Sterrenburg, P. & Mengelers, M.J.B. & van der Fels-Klerx, H.J., 2011. "Approach for a pro-active emerging risk system on biofuel by-products in feed," Food Policy, Elsevier, vol. 36(3), pages 421-429, June.
    18. Makkonen, Mari & Pätäri, Satu & Jantunen, Ari & Viljainen, Satu, 2012. "Competition in the European electricity markets – outcomes of a Delphi study," Energy Policy, Elsevier, vol. 44(C), pages 431-440.
    19. Georg Aichholzer, 2002. "Das ExpertInnen-Delphi: methodische Grundlagen und Anwendungsfeld ‘Technology Foresight‘ (The Expert Delphi: Methodology and Application in 'Technology Foresight')," ITA manu:scripts 02_01, Institute of Technology Assessment (ITA).
    20. Hayes, Tom, 2007. "Delphi study of the future of marketing of higher education," Journal of Business Research, Elsevier, vol. 60(9), pages 927-931, September.
    21. Ying Zhou & Weiwei Li & Pingtao Yi & Chengju Gong, 2019. "Evaluation of City Sustainability from the Perspective of Behavioral Guidance," Sustainability, MDPI, vol. 11(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6839-:d:582403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.