IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6742-d580377.html
   My bibliography  Save this article

Pilot-Scale Airlift Bioreactor with Function-Enhanced Microbes for the Reduction of Refinery Excess Sludge

Author

Listed:
  • Hongyan Mu

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Min Zhang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Shanshan Sun

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
    School of Petroleum Engineering, Yangtze University, Wuhan 430100, China)

  • Zhaozheng Song

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Yijing Luo

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Zhongzhi Zhang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Qingzhe Jiang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

Abstract

A pilot-scale airlift bioreactor (ALBR) system was built and operated continuously for refinery excess sludge (RES) reduction. Combined ALBR and function-enhanced microbes (composed of photosynthetic bacteria and yeast) were integrated into the system. The pilot-scale ALBR was operated for 62 days, and the start-up time was 7 d. Continuous operation showed that the sludge reduction efficiency was more than 56.22%, and the water quality of the effluent was satisfactory. This study focused on investigating the effects of hydraulic retention time (HRT) on the stability of the system and the effect of sludge reduction. Under different HRT conditions of 40, 26.7, 20, and 16 h, the sludge reduction rates reached 56.22%, 73.24%, 74.09%, and 69.64%, respectively. The removal rates of chemical oxygen demand ( COD ) and total nitrogen (TN) decreased with decreasing HRT, whereas the removal rate of NH 4 + -N increased. The removal rate of total phosphorus (TP) was approximately 30%. Results indicate that the ALBR and function-enhanced microbe system can reduce sludge and treat sewage simultaneously, and the effluent is up to the national emission standard. Addition of function-enhanced microbes can promote the degradation of petroleum hydrocarbon substances in the sludge, especially alkanes with low carbon numbers. This study suggests that the optimal HRT for the system is 16 h. The total operation cost of the ALBR combined with the function-enhanced microbe system can be reduced by 50% compared with the cost of direct treatment of the RES system.

Suggested Citation

  • Hongyan Mu & Min Zhang & Shanshan Sun & Zhaozheng Song & Yijing Luo & Zhongzhi Zhang & Qingzhe Jiang, 2021. "Pilot-Scale Airlift Bioreactor with Function-Enhanced Microbes for the Reduction of Refinery Excess Sludge," IJERPH, MDPI, vol. 18(13), pages 1-12, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6742-:d:580377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chien Li Lee & Cheng-Hsien Tsai & Chih-Ju G. Jou, 2020. "Energy and Resource Utilization of Refining Industry Oil Sludge by Microwave Treatment," Sustainability, MDPI, vol. 12(17), pages 1-9, August.
    2. Alsayed Mostafa & Min-Gyun Kim & Seongwon Im & Mo-Kwon Lee & Seoktae Kang & Dong-Hoon Kim, 2020. "Series of Combined Pretreatment Can Affect the Solubilization of Waste-Activated Sludge," Energies, MDPI, vol. 13(16), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
    2. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    3. Hongyuan Qi & Huayi Jiang & Yanzhen You & Juan Hu & Yulong Wang & Zhe Wu & Hongxin Qi, 2022. "Mechanism of Magnetic Nanoparticle Enhanced Microwave Pyrolysis for Oily Sludge," Energies, MDPI, vol. 15(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6742-:d:580377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.