IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i11p5971-d567612.html
   My bibliography  Save this article

Ecological, Social, and Other Environmental Determinants of Dengue Vector Abundance in Urban and Rural Areas of Northeastern Thailand

Author

Listed:
  • Md. Siddikur Rahman

    (Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
    Department of Statistics, Begum Rokeya University, Rangpur 5404, Bangladesh)

  • Tipaya Ekalaksananan

    (Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
    HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Sumaira Zafar

    (Environmental Engineering and Management Program, Asian Institute of Technology, Pathumthani 12120, Thailand)

  • Petchaboon Poolphol

    (Office of Disease Prevention and Control 10, Ubon Ratchathani 35000, Thailand)

  • Oleg Shipin

    (Environmental Engineering and Management Program, Asian Institute of Technology, Pathumthani 12120, Thailand)

  • Ubydul Haque

    (Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, North Texas, Fort Worth, TX 76107, USA)

  • Richard Paul

    (Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France)

  • Joacim Rocklöv

    (Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden)

  • Chamsai Pientong

    (Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
    HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Hans J. Overgaard

    (Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
    Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1430 Ås, Norway)

Abstract

Aedes aegypti is the main vector of dengue globally. The variables that influence the abundance of dengue vectors are numerous and complex. This has generated a need to focus on areas at risk of disease transmission, the spatial-temporal distribution of vectors, and the factors that modulate vector abundance. To help guide and improve vector-control efforts, this study identified the ecological, social, and other environmental risk factors that affect the abundance of adult female and immature Ae. aegypti in households in urban and rural areas of northeastern Thailand. A one-year entomological study was conducted in four villages of northeastern Thailand between January and December 2019. Socio-demographic; self-reported prior dengue infections; housing conditions; durable asset ownership; water management; characteristics of water containers; knowledge, attitudes, and practices (KAP) regarding climate change and dengue; and climate data were collected. Household crowding index (HCI), premise condition index (PCI), socio-economic status (SES), and entomological indices (HI, CI, BI, and PI) were calculated. Negative binomial generalized linear models (GLMs) were fitted to identify the risk factors associated with the abundance of adult females and immature Ae. aegypti . Urban sites had higher entomological indices and numbers of adult Ae. aegypti mosquitoes than rural sites. Overall, participants’ KAP about climate change and dengue were low in both settings. The fitted GLM showed that a higher abundance of adult female Ae. aegypti was significantly ( p < 0.05) associated with many factors, such as a low education level of household respondents, crowded households, poor premise conditions, surrounding house density, bathrooms located indoors, unscreened windows, high numbers of wet containers, a lack of adult control, prior dengue infections, poor climate change adaptation, dengue, and vector-related practices. Many of the above were also significantly associated with a high abundance of immature mosquito stages. The GLM model also showed that maximum and mean temperature with four-and one-to-two weeks of lag were significant predictors ( p < 0.05) of the abundance of adult and immature mosquitoes, respectively, in northeastern Thailand. The low KAP regarding climate change and dengue highlights the engagement needs for vector-borne disease prevention in this region. The identified risk factors are important for the critical first step toward developing routine Aedes surveillance and reliable early warning systems for effective dengue and other mosquito-borne disease prevention and control strategies at the household and community levels in this region and similar settings elsewhere.

Suggested Citation

  • Md. Siddikur Rahman & Tipaya Ekalaksananan & Sumaira Zafar & Petchaboon Poolphol & Oleg Shipin & Ubydul Haque & Richard Paul & Joacim Rocklöv & Chamsai Pientong & Hans J. Overgaard, 2021. "Ecological, Social, and Other Environmental Determinants of Dengue Vector Abundance in Urban and Rural Areas of Northeastern Thailand," IJERPH, MDPI, vol. 18(11), pages 1-23, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5971-:d:567612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/11/5971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/11/5971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Willis, K. G. & Tipple, A. G., 1991. "Economics of multihabitation: Housing conditions, household occupancy and household structure under rent control, inflation, and nonmarketability of ownership rights," World Development, Elsevier, vol. 19(12), pages 1705-1720, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meghan Matlack & Hannah Covert & Arti Shankar & Wilco Zijlmans & Firoz Abdoel Wahid & Ashna Hindori-Mohangoo & Maureen Lichtveld, 2023. "Development of a Pilot Literacy Scale to Assess Knowledge, Attitudes, and Behaviors towards Climate Change and Infectious Disease Dynamics in Suriname," IJERPH, MDPI, vol. 20(24), pages 1-14, December.
    2. Sumaira Zafar & Oleg Shipin & Richard E. Paul & Joacim Rocklöv & Ubydul Haque & Md. Siddikur Rahman & Mayfong Mayxay & Chamsai Pientong & Sirinart Aromseree & Petchaboon Poolphol & Tiengkham Pongvongs, 2021. "Development and Comparison of Dengue Vulnerability Indices Using GIS-Based Multi-Criteria Decision Analysis in Lao PDR and Thailand," IJERPH, MDPI, vol. 18(17), pages 1-25, September.
    3. Adivânia Cardoso da Silva & Paulo Sérgio Scalize, 2023. "Environmental Variables Related to Aedes aegypti Breeding Spots and the Occurrence of Arbovirus Diseases," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    4. A. S. M. Maksud Kamal & Md. Nahid Al-Montakim & Md. Asif Hasan & Mst. Maxim Parvin Mitu & Md. Yousuf Gazi & Md. Mahin Uddin & Md. Bodruddoza Mia, 2023. "Relationship between Urban Environmental Components and Dengue Prevalence in Dhaka City—An Approach of Spatial Analysis of Satellite Remote Sensing, Hydro-Climatic, and Census Dengue Data," IJERPH, MDPI, vol. 20(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    2. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    5. Ben C. Arimah, 1997. "The Determinants of Housing Tenure Choice in Ibadan, Nigeria," Urban Studies, Urban Studies Journal Limited, vol. 34(1), pages 105-124, January.
    6. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    8. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    9. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    10. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    11. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    12. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    13. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    14. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    15. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    16. Irit Sinai, 2001. "Intraurban Housing Mobility in a Traditional West African City: Shelter or Business Decision?," Urban Studies, Urban Studies Journal Limited, vol. 38(3), pages 535-540, March.
    17. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    18. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    19. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    20. Emma Taylor-Salmon & Verity Hill & Lauren M. Paul & Robert T. Koch & Mallery I. Breban & Chrispin Chaguza & Afeez Sodeinde & Joshua L. Warren & Sylvia Bunch & Natalia Cano & Marshall Cone & Sarah Eyso, 2024. "Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:5971-:d:567612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.