IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2020i1p76-d467647.html
   My bibliography  Save this article

Targeting Malaria Hotspots to Reduce Transmission Incidence in Senegal

Author

Listed:
  • Kankoé Sallah

    (Sciences Economiques et Sociales de la Santé et Traitement de de l’Information Médicale (SESSTIM), Institut de Recherche pour le Développement (IRD), Institut National de la Santé et de la Recherche médicale (INSERM), Aix Marseille Université, 13005 Marseille, France
    Assistance Publique-Hôpitaux de Paris, Hôpital Bichat Claude Bernard, 75018 Paris, France
    Center for Methodology and Modeling, Lomé BP 80956, Togo)

  • Roch Giorgi

    (Sciences Economiques et Sociales de la Santé et Traitement de de l’Information Médicale (SESSTIM), Institut de Recherche pour le Développement (IRD), Institut National de la Santé et de la Recherche médicale (INSERM), Aix Marseille Université, 13005 Marseille, France
    Assistance Publique-Hopitaux de Marseille, Hopital La Timone, BioSTIC, Biostatistic and ICT, 13005 Marseille, France)

  • El-Hadj Ba

    (Institut de Recherche pour le Développement (IRD), Université Cheikh Anta Diop, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Dakar CP 18524, Senegal)

  • Martine Piarroux

    (Institut Pierre-Louis d’Epidémiologie et de Santé Publique, Institut National de la Santé et de la Recherche médicale (INSERM), AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, 75646 Paris CEDEX 13, France)

  • Renaud Piarroux

    (Institut Pierre-Louis d’Epidémiologie et de Santé Publique, Institut National de la Santé et de la Recherche médicale (INSERM), AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, 75646 Paris CEDEX 13, France)

  • Badara Cisse

    (Institut de Recherche pour le Développement (IRD), Université Cheikh Anta Diop, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Dakar CP 18524, Senegal)

  • Jean Gaudart

    (Sciences Economiques et Sociales de la Santé et Traitement de de l’Information Médicale (SESSTIM), Institut de Recherche pour le Développement (IRD), Institut National de la Santé et de la Recherche médicale (INSERM), Aix Marseille Université, 13005 Marseille, France
    Assistance Publique-Hopitaux de Marseille, Hopital La Timone, BioSTIC, Biostatistic and ICT, 13005 Marseille, France)

Abstract

In central Senegal, malaria incidence declined in response to scaling-up of control measures from 2000 to 2010 and has since remained stable, making elimination unlikely in the short term. Additional control measures are needed to reduce transmission. We simulated chemoprophylaxis interventions targeting malaria hotspots using a metapopulation mathematical model, based on a differential-equation framework and incorporating human mobility. The model was fitted to weekly malaria incidence from 45 villages. Three approaches for selecting intervention targets were compared: (a) villages with malaria cases during the low transmission season of the previous year; (b) villages with highest incidence during the high transmission season of the previous year; (c) villages with highest connectivity with adjacent populations. Our results showed that intervention strategies targeting hotspots would be effective in reducing malaria incidence in both targeted and untargeted areas. Regardless of the intervention strategy used, pre-elimination (1–5 cases per 1000 per year) would not be reached without simultaneously increasing vector control by more than 10%. A cornerstone of malaria control and elimination is the effective targeting of strategic locations. Mathematical tools help to identify those locations and estimate the impact in silico.

Suggested Citation

  • Kankoé Sallah & Roch Giorgi & El-Hadj Ba & Martine Piarroux & Renaud Piarroux & Badara Cisse & Jean Gaudart, 2020. "Targeting Malaria Hotspots to Reduce Transmission Incidence in Senegal," IJERPH, MDPI, vol. 18(1), pages 1-17, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:76-:d:467647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/1/76/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/1/76/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soetaert, Karline & Petzoldt, Thomas, 2010. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i03).
    2. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, W. & O’Neill, E. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Applying Bayesian Model Averaging to Characterise Urban Residential Stock Turnover Dynamics," Cambridge Working Papers in Economics 1986, Faculty of Economics, University of Cambridge.
    2. Chen, Yanguang, 2023. "Demonstration of duality of fractal gravity models by scaling symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    4. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    5. Hanson, Paul C. & Stillman, Aviah B. & Jia, Xiaowei & Karpatne, Anuj & Dugan, Hilary A. & Carey, Cayelan C. & Stachelek, Joseph & Ward, Nicole K. & Zhang, Yu & Read, Jordan S. & Kumar, Vipin, 2020. "Predicting lake surface water phosphorus dynamics using process-guided machine learning," Ecological Modelling, Elsevier, vol. 430(C).
    6. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    7. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    8. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    9. Chen, Yong & Geng, Maosi & Zeng, Jiaqi & Yang, Di & Zhang, Lei & Chen, Xiqun (Michael), 2023. "A novel ensemble model with conditional intervening opportunities for ride-hailing travel mobility estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    10. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    11. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    12. Mark Thissen & Olga Ivanova & Giovanni Mandras & Trond Husby, 2019. "European NUTS 2 regions: construction of interregional trade-linked Supply and Use tables with consistent transport flows," JRC Working Papers on Territorial Modelling and Analysis 2019-01, Joint Research Centre.
    13. Hannah Al Ali & Alireza Daneshkhah & Abdesslam Boutayeb & Zindoga Mukandavire, 2022. "Examining Type 1 Diabetes Mathematical Models Using Experimental Data," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    14. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    15. Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    16. Gonzalo Suarez & Rachata Muneepeerakul, 2022. "Modeling human migration driven by changing mindset, agglomeration, social ties, and the environment," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-11, February.
    17. Rosita De Vincentis & Federico Karagulian & Carlo Liberto & Marialisa Nigro & Vincenza Rosati & Gaetano Valenti, 2022. "A Data-Driven Approach to Analyze Mobility Patterns and the Built Environment: Evidence from Brescia, Catania, and Salerno (Italy)," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    18. Vinyas Harish & Felipe J. Colón-González & Filipe R. R. Moreira & Rory Gibb & Moritz U. G. Kraemer & Megan Davis & Robert C. Reiner & David M. Pigott & T. Alex Perkins & Daniel J. Weiss & Isaac I. Bog, 2024. "Human movement and environmental barriers shape the emergence of dengue," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    20. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:76-:d:467647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.