IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i7p2358-d339271.html
   My bibliography  Save this article

Exploring the Determinants of the Severity of Pedestrian Injuries by Pedestrian Age: A Case Study of Daegu Metropolitan City, South Korea

Author

Listed:
  • Seung-Hoon Park

    (Department of Urban Planning, Keimyung University, Daegu 42601, Korea)

  • Min-Kyung Bae

    (Land & Housing Institute, Daejeon 34047, Korea)

Abstract

Pedestrian-vehicle crashes can result in serious injury to pedestrians, who are exposed to danger when in close proximity to moving vehicles. Furthermore, these injuries can be considerably serious and even lead to death in a manner that varies depending on the pedestrian’s age. This is because the pedestrian’s physical characteristics and behaviors, particularly in relation to roads with moving vehicles, differ depending on the pedestrian’s age. This study examines the determinants of pedestrian injury severity by pedestrian age using binary logistic regression. Factors in the built environment, such as road characteristics and land use of the places where pedestrian crashes occurred, were considered, as were the accident characteristics of the pedestrians and drivers. The analysis determined that the accident characteristics of drivers and pedestrians are more influential in pedestrian-vehicle crashes than the factors of the built environmental characteristics. However, there are substantial differences in injury severity relative to the pedestrian’s age. Young pedestrians (aged under 20 years old) are more likely to suffer serious injury in school zones; however, no association between silver zones and injury severity is found for elderly pedestrians. For people in the age range of 20–39 years old, the severity of pedestrian injuries is lower in areas with more crosswalks and speed cameras. People in the age range of 40–64 years old are more likely to be injured in areas with more neighborhood streets and industrial land use. Elderly pedestrians are likely to suffer fatal injuries in areas with more traffic signals. This study finds that there are differences in the factors of pedestrian injury severity according to the age of pedestrians. Therefore, it is suggested that concrete and efficient policies related to pedestrian age are required to improve pedestrian safety and reduce pedestrian-vehicle crashes.

Suggested Citation

  • Seung-Hoon Park & Min-Kyung Bae, 2020. "Exploring the Determinants of the Severity of Pedestrian Injuries by Pedestrian Age: A Case Study of Daegu Metropolitan City, South Korea," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2358-:d:339271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/7/2358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/7/2358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chia-Yuan Yu, 2015. "Built Environmental Designs in Promoting Pedestrian Safety," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    2. Hanson, Christopher S. & Noland, Robert B. & Brown, Charles, 2013. "The severity of pedestrian crashes: an analysis using Google Street View imagery," Journal of Transport Geography, Elsevier, vol. 33(C), pages 42-53.
    3. Feng Chen & Mingtao Song & Xiaoxiang Ma, 2019. "Investigation on the Injury Severity of Drivers in Rear-End Collisions Between Cars Using a Random Parameters Bivariate Ordered Probit Model," IJERPH, MDPI, vol. 16(14), pages 1-12, July.
    4. Zhiyuan Sun & Jianyu Wang & Yanyan Chen & Huapu Lu, 2018. "Influence Factors on Injury Severity of Traffic Accidents and Differences in Urban Functional Zones: The Empirical Analysis of Beijing," IJERPH, MDPI, vol. 15(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arshad Jamal & Waleed Umer, 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network," IJERPH, MDPI, vol. 17(20), pages 1-22, October.
    2. Bong Gu Kang & Byeong Soo Kim, 2023. "A Study on Cognitive Error Validation for LED In-Ground Traffic Lights Using a Digital Twin and Virtual Environment," Mathematics, MDPI, vol. 11(17), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Chen & Huiying Wen & Qiang Zhu & Sheng Zhao, 2023. "Severity Analysis of Multi-Truck Crashes on Mountain Freeways Using a Mixed Logit Model," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Mahyar Madarshahian & Aditya Balaram & Fahim Ahmed & Nathan Huynh & Chowdhury K. A. Siddiqui & Mark Ferguson, 2023. "Analysis of Injury Severity of Work Zone Truck-Involved Crashes in South Carolina for Interstates and Non-Interstates," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    3. Jianyu Wang & Huapu Lu & Zhiyuan Sun & Tianshi Wang, 2020. "Exploring Factors Influencing Injury Severity of Vehicle At-Fault Accidents: A Comparative Analysis of Passenger and Freight Vehicles," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    4. Yubing Zheng & Yang Ma & Nan Li & Jianchuan Cheng, 2019. "Personality and Behavioral Predictors of Cyclist Involvement in Crash-Related Conditions," IJERPH, MDPI, vol. 16(24), pages 1-19, December.
    5. Yun Xiao, 2020. "Analysis of the influencing factors of the unsafe driving behaviors of online car-hailing drivers in china," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-13, April.
    6. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Effect of Imitation Phenomenon on Two-Lane Traffic Safety in Fog Weather," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    7. Zijun Liang & Yun Xiao, 2020. "Analysis of factors influencing expressway speeding behavior in China," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-13, September.
    8. Hong Tan & Fuquan Zhao & Han Hao & Zongwei Liu & Amer Ahmad Amer & Hassan Babiker, 2020. "Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China," IJERPH, MDPI, vol. 17(3), pages 1-13, February.
    9. Aghaabbasi, Mahdi & Moeinaddini, Mehdi & Shah, Muahammad Zaly & Asadi-Shekari, Zohreh, 2018. "Addressing issues in the use of Google tools for assessing pedestrian built environments," Journal of Transport Geography, Elsevier, vol. 73(C), pages 185-198.
    10. Jonathan Stiles & Yuchen Li & Harvey J Miller, 2022. "How does street space influence crash frequency? An analysis using segmented street view imagery," Environment and Planning B, , vol. 49(9), pages 2467-2483, November.
    11. Dongkwan Lee & Jean-Michel Guldmann & Burkhard von Rabenau, 2023. "Impact of Driver’s Age and Gender, Built Environment, and Road Conditions on Crash Severity: A Logit Modeling Approach," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    12. Liqing Li & Haifeng Ding, 2022. "The Relationship between Internet Use and Population Health: A Cross-Sectional Survey in China," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    13. Yuhuan Zhang & Huapu Lu & Wencong Qu, 2020. "Geographical Detection of Traffic Accidents Spatial Stratified Heterogeneity and Influence Factors," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    14. Shuaiming Chen & Haipeng Shao & Ximing Ji, 2021. "Insights into Factors Affecting Traffic Accident Severity of Novice and Experienced Drivers: A Machine Learning Approach," IJERPH, MDPI, vol. 18(23), pages 1-20, December.
    15. Haorong Peng & Xiaoxiang Ma & Feng Chen, 2020. "Examining Injury Severity of Pedestrians in Vehicle–Pedestrian Crashes at Mid-Blocks Using Path Analysis," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    16. Zhuanglin Ma & Mingjie Luo & Steven I-Jy Chien & Dawei Hu & Xue Zhao, 2020. "Analyzing drivers’ perceived service quality of variable message signs (VMS)," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
    17. Changxi Ma & Jibiao Zhou & Dong Yang, 2020. "Causation Analysis of Hazardous Material Road Transportation Accidents Based on the Ordered Logit Regression Model," IJERPH, MDPI, vol. 17(4), pages 1-25, February.
    18. Afaq Khattak & Hamad Almujibah & Ahmed Elamary & Caroline Mongina Matara, 2022. "Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    19. Kanghyun Kim & Jungyeol Hong, 2023. "Severity Predictions for Intercity Bus Crashes on Highway Using a Random Parameter Ordered Probit Model," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    20. Fanyu Wang & Junyou Zhang & Shufeng Wang & Sixian Li & Wenlan Hou, 2020. "Analysis of Driving Behavior Based on Dynamic Changes of Personality States," IJERPH, MDPI, vol. 17(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2358-:d:339271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.