IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p917-d315443.html
   My bibliography  Save this article

Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China

Author

Listed:
  • Hong Tan

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China)

  • Fuquan Zhao

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China)

  • Han Hao

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China)

  • Zongwei Liu

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China)

  • Amer Ahmad Amer

    (Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia)

  • Hassan Babiker

    (Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia)

Abstract

The automatic emergency braking (AEB) system is an effective intelligent vehicle active safety system for avoiding certain types of collisions. This study develops a national-level safety impact evaluation model for this intelligent vehicle function, including the potential maximum impact and realistic impact. The evaluation model was firstly applied in China to provide insights into Chinese policymaking. Road traffic fatality and severe injury trends, the proportion of different collision types, the effectiveness of collision avoidance, and the AEB market penetration rates are considered in the potential maximum impact scenario. Furthermore, the AEB activation rate and the technology’s technical limitations, including its effectiveness in different weather, light, and speed conditions, are discussed in the realistic scenario. With a 100% market penetration rate, fatalities could be reduced by 13.2%, and injuries could be reduced by 9.1%. Based on China’s policy, the market penetration rate of intelligent vehicles with AEB is predicted to be 34.0% in 2025 and 60.3% in 2030. With this large market penetration rate increase of AEB, the reductions in fatalities and severe injuries are 903–2309 and 2025–5055 in 2025; and 1483–3789 and 3895–7835 in 2030, respectively. Considering AEB’s activation rate and its three main limitations, the adjusted realistic result is approximately 2/5 of the potential maximum result.

Suggested Citation

  • Hong Tan & Fuquan Zhao & Han Hao & Zongwei Liu & Amer Ahmad Amer & Hassan Babiker, 2020. "Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China," IJERPH, MDPI, vol. 17(3), pages 1-13, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:917-:d:315443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian Wu & Hongmei Zhao & Xunmin Ou, 2014. "Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050," Sustainability, MDPI, vol. 6(8), pages 1-23, August.
    2. Feng Chen & Mingtao Song & Xiaoxiang Ma, 2019. "Investigation on the Injury Severity of Drivers in Rear-End Collisions Between Cars Using a Random Parameters Bivariate Ordered Probit Model," IJERPH, MDPI, vol. 16(14), pages 1-12, July.
    3. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    2. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    3. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    4. Haorong Peng & Xiaoxiang Ma & Feng Chen, 2020. "Examining Injury Severity of Pedestrians in Vehicle–Pedestrian Crashes at Mid-Blocks Using Path Analysis," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    5. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    6. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    7. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    8. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.
    9. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    10. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    11. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    12. Zhuanglin Ma & Mingjie Luo & Steven I-Jy Chien & Dawei Hu & Xue Zhao, 2020. "Analyzing drivers’ perceived service quality of variable message signs (VMS)," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
    13. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    14. Changxi Ma & Jibiao Zhou & Dong Yang, 2020. "Causation Analysis of Hazardous Material Road Transportation Accidents Based on the Ordered Logit Regression Model," IJERPH, MDPI, vol. 17(4), pages 1-25, February.
    15. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    16. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    17. Afaq Khattak & Hamad Almujibah & Ahmed Elamary & Caroline Mongina Matara, 2022. "Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    18. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    19. Zheng Chen & Huiying Wen & Qiang Zhu & Sheng Zhao, 2023. "Severity Analysis of Multi-Truck Crashes on Mountain Freeways Using a Mixed Logit Model," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    20. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:917-:d:315443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.