IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i7p2317-d338738.html
   My bibliography  Save this article

Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case

Author

Listed:
  • Maria Cristina Collivignarelli

    (Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 1, 27100 Pavia, Italy
    Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy)

  • Marco Carnevale Miino

    (Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 1, 27100 Pavia, Italy)

  • Franco Hernan Gomez

    (Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy)

  • Vincenzo Torretta

    (Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy)

  • Elena Cristina Rada

    (Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy)

  • Sabrina Sorlini

    (Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy)

Abstract

In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and semiarid zones. Although there is no single optimal solution in order to treat GW, constructed wetlands proved to be effective. In this paper, the results of the treatment of a real GW by a horizontal flow constructed wetland (HFCW) for more than four months are shown. In the preliminary laboratory-scale plant, Phragmites australis , Carex oshimensis and Cyperus papyrus were tested separately and showed very similar results. In the second phase, pilot-scale tests were conducted to confirm the performance at a larger scale and evaluate the influence of hydraulic retention time, obtaining very high removal yields on turbidity (>92%), total suspended solids (TSS) (>85%), chemical oxygen demand (COD) (>89%), and five-day biological oxygen demand (BOD 5 ) (>88%). Based on the results of the pilot-scale HFCW, a comparison with international recommendations by World Health Organization and European Union is discussed.

Suggested Citation

  • Maria Cristina Collivignarelli & Marco Carnevale Miino & Franco Hernan Gomez & Vincenzo Torretta & Elena Cristina Rada & Sabrina Sorlini, 2020. "Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2317-:d:338738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/7/2317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/7/2317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Macías-García & Justo García-Sanz-Calcedo & Juan Pablo Carrasco-Amador & Raúl Segura-Cruz, 2019. "Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters," Sustainability, MDPI, vol. 11(9), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Cristina Collivignarelli & Alessandro Abbà & Marco Carnevale Miino & Francesca Maria Caccamo & Vincenzo Torretta & Elena Cristina Rada & Sabrina Sorlini, 2020. "Disinfection of Wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where Are We at?," IJERPH, MDPI, vol. 18(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heng Wei & Jiankun Sun & Bin Zhang & Rongzhan Liu, 2020. "Comparative Study of Cationic Dye Adsorption Using Industrial Latex Sludge with Sulfonate and Pyrolysis Treatment," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    2. Henry Rodríguez-Serin & Auria Gamez-Jara & Magaly De La Cruz-Noriega & Segundo Rojas-Flores & Magda Rodriguez-Yupanqui & Moises Gallozzo Cardenas & José Cruz-Monzon, 2022. "Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater," IJERPH, MDPI, vol. 19(20), pages 1-24, October.
    3. Md Ekhlasur Rahman & Mohd Izuan Effendi Bin Halmi & Mohd Yusoff Bin Abd Samad & Md Kamal Uddin & Khairil Mahmud & Mohd Yunus Abd Shukor & Siti Rozaimah Sheikh Abdullah & S M Shamsuzzaman, 2020. "Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant," IJERPH, MDPI, vol. 17(22), pages 1-40, November.
    4. Ahmad Hakky Mohammad & Ivona Radovic & Marija Ivanović & Mirjana Kijevčanin, 2022. "Adsorption of Metformin on Activated Carbon Produced from the Water Hyacinth Biowaste Using H 3 PO 4 as a Chemical Activator," Sustainability, MDPI, vol. 14(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2317-:d:338738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.