IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p991-d316673.html
   My bibliography  Save this article

Dynamic Evolution of the Ecological Carrying Capacity of Poverty-Stricken Karst Counties Based on Ecological Footprints: A Case Study in Northwestern Guangxi, China

Author

Listed:
  • Shana Shi

    (College of Resources and Environment Science, Hunan Normal University, Changsha 410081, China
    Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China)

  • Baoqing Hu

    (Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China)

  • Yan Yan

    (Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China)

  • Xiaoqing Li

    (College of Resources and Environment Science, Hunan Normal University, Changsha 410081, China)

  • Kaichun Zhou

    (College of Resources and Environment Science, Hunan Normal University, Changsha 410081, China)

  • Chuanyong Tang

    (School of Geography and Planning, Nanning Normal University, Nanning 530001, China)

  • Binggeng Xie

    (College of Resources and Environment Science, Hunan Normal University, Changsha 410081, China)

Abstract

The karst area in northwestern Guangxi is poor, underdeveloped, and ecologically fragile. It is experiencing rocky desertification, which creates challenges that are more severe than those of other regional ecological environments. In this paper, the ecological footprint (EF) model is used to analyze the ecological carrying capacity (EC) in northwestern Guangxi from 1995 to 2015, and the differences in karst counties with different poverty levels are discussed. The results show that (1) since 1995, the EC of northwestern Guangxi has continued to decrease, the EF has continued to increase, the ecological deficit (ED) has been expanding, and the status of the region has been unsustainable for a long time. (2) The evolutionary patterns, EF and EC of karst counties with different poverty levels are different. The county with the lowest poverty rate has the fastest growth rate of the per capita EF. The county with the largest proportion of karst area has the lowest EC. (3) It is recommended that different types of counties take different measures, including strengthening ecological environment protection, carrying out rocky desertification control and ecological resettlement projects, and reducing energy consumption. This study can provide information for the sustainable development of the karst region and provide decision support for regional poverty alleviation.

Suggested Citation

  • Shana Shi & Baoqing Hu & Yan Yan & Xiaoqing Li & Kaichun Zhou & Chuanyong Tang & Binggeng Xie, 2020. "Dynamic Evolution of the Ecological Carrying Capacity of Poverty-Stricken Karst Counties Based on Ecological Footprints: A Case Study in Northwestern Guangxi, China," IJERPH, MDPI, vol. 17(3), pages 1-20, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:991-:d:316673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Li-Hua & Zhang, Xing-Cai & Luo, Gao-Yuan, 2008. "Application of system dynamics in analyzing the carrying capacity of water resources in Yiwu City, China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 269-278.
    2. Van Passel, Steven & Nevens, Frank & Mathijs, Erik & Van Huylenbroeck, Guido, 2007. "Measuring farm sustainability and explaining differences in sustainable efficiency," Ecological Economics, Elsevier, vol. 62(1), pages 149-161, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    2. Yanping Yang & Jianjun Chen & Renjie Huang & Zihao Feng & Guoqing Zhou & Haotian You & Xiaowen Han, 2022. "Construction of Ecological Security Pattern Based on the Importance of Ecological Protection—A Case Study of Guangxi, a Karst Region in China," IJERPH, MDPI, vol. 19(9), pages 1-22, May.
    3. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    4. Shiwen Zhang & Xiaoling Xie, 2022. "Exploration of Rural Agroforestry–Pastoral Complex Systems Based on Ecological Footprint*—Taking Zhagana in Yiwa Township as an Example," Sustainability, MDPI, vol. 14(21), pages 1-15, November.
    5. Hefeng Wang & Yuan Cao & Xiaohu Wu & Ao Zhao & Yi Xie, 2022. "Estimation and Potential Analysis of Land Population Carrying Capacity in Shanghai Metropolis," IJERPH, MDPI, vol. 19(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veronika Fenyves & Tibor Tarnóczi & Zoltán Bács & Dóra Kerezsi & Péter Bajnai & Mihály Szoboszlai, 2022. "Financial efficiency analysis of Hungarian agriculture, fisheries and forestry sector," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 413-426.
    2. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    3. Genesis T. Yengoh & Frederick Ato Armah & Edward Ebo Onumah, 2010. "Paths to Attaining Food Security: The Case of Cameroon," Challenges, MDPI, vol. 1(1), pages 1-22, August.
    4. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    5. José A. Gómez-Limón & Andrés J. Picazo-Tadeo & Ernest Reig-Martínez, 2011. "Eco-efficiency Assessment of Olive Farms in Andalusia," Working Papers 1105, Department of Applied Economics II, Universidad de Valencia.
    6. Ernest Reig‐Martínez & José A. Gómez‐Limón & Andrés J. Picazo‐Tadeo, 2011. "Ranking farms with a composite indicator of sustainability," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 561-575, September.
    7. Stylianou, Andreas & Sdrali, Despina & Apostolopoulos, Constantinos D., 2020. "Capturing the diversity of Mediterranean farming systems prior to their sustainability assessment: The case of Cyprus," Land Use Policy, Elsevier, vol. 96(C).
    8. Eigner, Amanda E. & Nuppenau, Ernst-August, 2019. "Applied spatial approach of modelling field size changes based on a consideration of farm and landscape interrelations," Agricultural Systems, Elsevier, vol. 176(C).
    9. Alexandra Sintori & Penelope Gouta & Vasilia Konstantidelli & Irene Tzouramani, 2024. "Eco-Efficiency of Olive Farms across Diversified Ecological Farming Approaches," Land, MDPI, vol. 13(1), pages 1-19, January.
    10. Van Passel, Steven, 2008. "Assessing farm sustainability with value oriented methods," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44141, European Association of Agricultural Economists.
    11. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    12. Naald, Brian Vander & Cameron, Trudy Ann, 2011. "Willingness to pay for other species' well-being," Ecological Economics, Elsevier, vol. 70(7), pages 1325-1335, May.
    13. Yiridoe, Emmanuel K. & Amon-Armah, Frederick & Hebb, Dale & Jamieson, Rob, 2013. "Eco-efficiency of Alternative Cropping Systems Managed in an Agricultural Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150357, Agricultural and Applied Economics Association.
    14. Ang, Frederic & Van Passel, Steven & Mathijs, Erik, 2011. "An aggregate resource efficiency perspective on sustainability: A Sustainable Value application to the EU-15 countries," Ecological Economics, Elsevier, vol. 71(C), pages 99-110.
    15. Paracchini, Maria Luisa & Bulgheroni, Claudia & Borreani, Giorgio & Tabacco, Ernesto & Banterle, Alessandro & Bertoni, Danilo & Rossi, Graziano & Parolo, Gilberto & Origgi, Roberto & De Paola, Claudio, 2015. "A diagnostic system to assess sustainability at a farm level: The SOSTARE model," Agricultural Systems, Elsevier, vol. 133(C), pages 35-53.
    16. Xun-Gui Li & Xia Wei & Nai-Ang Wang & Hong-Yi Cheng, 2011. "Maximum Grade Approach to Surplus Floodwater of Hyperconcentration Rivers in Flood Season and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2575-2593, August.
    17. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    18. Gloria P. Rios & Sergio Botero, 2020. "An Integrated Indicator to Analyze Sustainability in Specialized Dairy Farms in Antioquia—Colombia," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    19. Yahui Lv & Chao Zhang & Jiani Ma & Wenju Yun & Lulu Gao & Pengshan Li, 2019. "Sustainability Assessment of Smallholder Farmland Systems: Healthy Farmland System Assessment Framework," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    20. Moretti, Michele & Vanschoenwinkel, Janka & Van Passel, Steven, 2021. "Accounting for externalities in cross-sectional economic models of climate change impacts," Ecological Economics, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:991-:d:316673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.