IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i22p8619-d448087.html
   My bibliography  Save this article

Lagged Association of Ambient Outdoor Air Pollutants with Asthma-Related Emergency Department Visits within the Pittsburgh Region

Author

Listed:
  • Brandy M. Byrwa-Hill

    (Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA)

  • Arvind Venkat

    (Department of Emergency Medicine, Allegheny Health Network, Pittsburgh, PA 15212, USA)

  • Albert A. Presto

    (Center for Atmospheric Particle Studies and Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA)

  • Judith R. Rager

    (Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA)

  • Deborah Gentile

    (Allergy and Asthma Wellness Centers, Butler, PA 16066, USA
    Authors contribute equally to this work.)

  • Evelyn Talbott

    (Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA
    Authors contribute equally to this work.)

Abstract

Asthma affects millions of people globally and is especially concerning in populations living with poor air quality. This study examines the association of ambient outdoor air pollutants on asthma-related emergency department (ED) visits in children and adults throughout the Pittsburgh region. A time-stratified case-crossover design is used to analyze the lagged effects of fine particulate matter (PM 2.5 ) and gaseous pollutants, e.g., ozone (O 3 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and carbon monoxide (CO) on asthma-related ED visits ( n = 6682). Single-, double-, and multi-pollutant models are adjusted for temperature and analyzed using conditional logistic regression. In children, all models show an association between O 3 and increased ED visits at lag day 1 (OR: 1.12, 95% CI, 1.03–1.22, p < 0.05) for the double-pollutant model (OR: 1.10, 95% CI: 1.01-1.20, p < 0.01). In adults, the single-pollutant model shows associations between CO and increased ED visits at lag day 5 (OR: 1.13, 95% CI, 1.00–1.28, p < 0.05) and average lag days 0–5 (OR: 1.22, 95% CI: 1.00–1.49, p < 0.05), and for NO 2 at lag day 5 (OR: 1.04, 95% CI: 1.00–1.07, p < 0.05). These results show an association between air pollution and asthma morbidity in the Pittsburgh region and underscore the need for mitigation efforts to improve public health outcomes.

Suggested Citation

  • Brandy M. Byrwa-Hill & Arvind Venkat & Albert A. Presto & Judith R. Rager & Deborah Gentile & Evelyn Talbott, 2020. "Lagged Association of Ambient Outdoor Air Pollutants with Asthma-Related Emergency Department Visits within the Pittsburgh Region," IJERPH, MDPI, vol. 17(22), pages 1-10, November.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:22:p:8619-:d:448087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/22/8619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/22/8619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ching-Yen Kuo & Chin-Kan Chan & Chiung-Yi Wu & Dinh-Van Phan & Chien-Lung Chan, 2019. "The Short-Term Effects of Ambient Air Pollutants on Childhood Asthma Hospitalization in Taiwan: A National Study," IJERPH, MDPI, vol. 16(2), pages 1-13, January.
    2. Antonis Analitis & Francesca De’ Donato & Matteo Scortichini & Timo Lanki & Xavier Basagana & Ferran Ballester & Christopher Astrom & Anna Paldy & Mathilde Pascal & Antonio Gasparrini & Paola Micheloz, 2018. "Synergistic Effects of Ambient Temperature and Air Pollution on Health in Europe: Results from the PHASE Project," IJERPH, MDPI, vol. 15(9), pages 1-11, August.
    3. Ching-Yen Kuo & Ren-Hao Pan & Chin-Kan Chan & Chiung-Yi Wu & Dinh-Van Phan & Chien-Lung Chan, 2018. "Application of a Time-Stratified Case-Crossover Design to Explore the Effects of Air Pollution and Season on Childhood Asthma Hospitalization in Cities of Differing Urban Patterns: Big Data Analytics ," IJERPH, MDPI, vol. 15(4), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Masselot & Fateh Chebana & Taha B. M. J. Ouarda & Diane Bélanger & Pierre Gosselin, 2022. "Data-Enhancement Strategies in Weather-Related Health Studies," IJERPH, MDPI, vol. 19(2), pages 1-13, January.
    2. Agnieszka Jakubowska & Marcin Rabe, 2022. "Air Pollution and Limitations in Health: Identification of Inequalities in the Burdens of the Economies of the “Old” and “New” EU," Energies, MDPI, vol. 15(17), pages 1-16, August.
    3. Lawrence A. Palinkas & Jessenia De Leon & Kexin Yu & Erika Salinas & Cecilia Fernandez & Jill Johnston & Md Mostafijur Rahman & Sam J. Silva & Michael Hurlburt & Rob S. McConnell & Erika Garcia, 2023. "Adaptation Resources and Responses to Wildfire Smoke and Other Forms of Air Pollution in Low-Income Urban Settings: A Mixed-Methods Study," IJERPH, MDPI, vol. 20(7), pages 1-16, April.
    4. Keith April G. Arano & Shengjing Sun & Joaquin Ordieres-Mere & and Bing Gong, 2019. "The Use of the Internet of Things for Estimating Personal Pollution Exposure," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    5. Pierre Masselot & Fateh Chebana & Éric Lavigne & Céline Campagna & Pierre Gosselin & Taha B.M.J. Ouarda, 2019. "Toward an Improved Air Pollution Warning System in Quebec," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
    6. Geraldine P. Y. Koo & Huili Zheng & Joel C. L. Aik & Benjamin Y. Q. Tan & Vijay K. Sharma & Ching Hui Sia & Marcus E. H. Ong & Andrew F. W. Ho, 2023. "Clustering of Environmental Parameters and the Risk of Acute Ischaemic Stroke," IJERPH, MDPI, vol. 20(6), pages 1-10, March.
    7. Tingru Yang & Wenling Liu, 2019. "Health Effects of Energy Intensive Sectors and the Potential Health Co-Benefits of a Low Carbon Industrial Transition in China," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    8. Bo Sun & Bo Wang, 2021. "Spatial Spillover Effects of Air Pollution on the Health Expenditure of Rural Residents: Based on Spatial Durbin Model," IJERPH, MDPI, vol. 18(13), pages 1-11, July.
    9. Geraldine P. Y. Koo & Huili Zheng & Pin Pin Pek & Fintan Hughes & Shir Lynn Lim & Jun Wei Yeo & Marcus E. H. Ong & Andrew F. W. Ho, 2022. "Clustering of Environmental Parameters and the Risk of Acute Myocardial Infarction," IJERPH, MDPI, vol. 19(14), pages 1-12, July.
    10. Hiroshi Yamaguchi & Kandai Nozu & Shinya Ishiko & Atsushi Kondo & Takeshi Ninchoji & China Nagano & Hiroki Takeda & Ai Unzaki & Kazuto Ishibashi & Ichiro Morioka & Hiroaki Nagase & Kazumoto Iijima & A, 2021. "Impact of the State of Emergency during the COVID-19 Pandemic in 2020 on Asthma Exacerbations among Children in Kobe City, Japan," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    11. Hung-Ta Wen & Jau-Huai Lu & Deng-Siang Jhang, 2021. "Features Importance Analysis of Diesel Vehicles’ NO x and CO 2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    12. Juha Baek & Bita A. Kash & Xiaohui Xu & Mark Benden & Jon Roberts & Genny Carrillo, 2020. "Association between Ambient Air Pollution and Hospital Length of Stay among Children with Asthma in South Texas," IJERPH, MDPI, vol. 17(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:22:p:8619-:d:448087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.