IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i12p2095-d239469.html
   My bibliography  Save this article

Toward an Improved Air Pollution Warning System in Quebec

Author

Listed:
  • Pierre Masselot

    (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, 490, rue de la Couronne, Québec, QC G1K 9A9, Canada)

  • Fateh Chebana

    (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, 490, rue de la Couronne, Québec, QC G1K 9A9, Canada)

  • Éric Lavigne

    (School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON K1G 5Z3, Canada
    Air health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, ON K1A 0K9, Canada)

  • Céline Campagna

    (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, 490, rue de la Couronne, Québec, QC G1K 9A9, Canada
    Institut National de Santé Publique du Québec, 945 Avenue Wolfe, Québec, QC G1V 5B3, Canada)

  • Pierre Gosselin

    (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, 490, rue de la Couronne, Québec, QC G1K 9A9, Canada
    Institut National de Santé Publique du Québec, 945 Avenue Wolfe, Québec, QC G1V 5B3, Canada
    Ouranos, 550 Rue Sherbrooke Ouest, Montréal, QC H3A 1B9, Canada)

  • Taha B.M.J. Ouarda

    (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, 490, rue de la Couronne, Québec, QC G1K 9A9, Canada)

Abstract

The nature of pollutants involved in smog episodes can vary significantly in various cities and contexts and will impact local populations differently due to actual exposure and pre-existing sensitivities for cardiovascular or respiratory diseases. While regulated standards and guidance remain important, it is relevant for cities to have local warning systems related to air pollution. The present paper proposes indicators and thresholds for an air pollution warning system in the metropolitan areas of Montreal and Quebec City (Canada). It takes into account past and current local health impacts to launch its public health warnings for short-term episodes. This warning system considers fine particulate matter (PM 2.5 ) as well as the combined oxidant capacity of ozone and nitrogen dioxide (O x ) as environmental exposures. The methodology used to determine indicators and thresholds consists in identifying extreme excess mortality episodes in the data and then choosing the indicators and thresholds to optimize the detection of these episodes. The thresholds found for the summer were 31 μg/m 3 for PM 2.5 and 43 ppb for O x in Montreal, and 32 μg/m 3 and 23 ppb in Quebec City. In winter, thresholds found were 25 μg/m 3 and 26 ppb in Montreal, and 33 μg/m 3 and 21 ppb in Quebec City. These results are in line with different guidelines existing concerning air quality, but more adapted to the cities examined. In addition, a sensitivity analysis is conducted which suggests that O x is more determinant than PM 2.5 in detecting excess mortality episodes.

Suggested Citation

  • Pierre Masselot & Fateh Chebana & Éric Lavigne & Céline Campagna & Pierre Gosselin & Taha B.M.J. Ouarda, 2019. "Toward an Improved Air Pollution Warning System in Quebec," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:12:p:2095-:d:239469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/12/2095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/12/2095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hajat, S. & Sheridan, S.C. & Allen, M.J. & Pascal, M. & Laaidi, K. & Yagouti, A. & Bickis, U. & Tobias, A. & Bourque, D. & Armstrong, B.G. & Kosatsky, T., 2010. "Heat-health warning systems: A comparison of the predictive capacity of different approaches to identifying dangerously hot days," American Journal of Public Health, American Public Health Association, vol. 100(6), pages 1137-1144.
    2. Chenchen Wang & Yifan Tu & Zongliang Yu & Rongzhu Lu, 2015. "PM 2.5 and Cardiovascular Diseases in the Elderly: An Overview," IJERPH, MDPI, vol. 12(7), pages 1-11, July.
    3. Antonis Analitis & Francesca De’ Donato & Matteo Scortichini & Timo Lanki & Xavier Basagana & Ferran Ballester & Christopher Astrom & Anna Paldy & Mathilde Pascal & Antonio Gasparrini & Paola Micheloz, 2018. "Synergistic Effects of Ambient Temperature and Air Pollution on Health in Europe: Results from the PHASE Project," IJERPH, MDPI, vol. 15(9), pages 1-11, August.
    4. Louis-Francois Tétreault & Marieve Doucet & Philippe Gamache & Michel Fournier & Allan Brand & Tom Kosatsky & Audrey Smargiassi, 2016. "Severe and Moderate Asthma Exacerbations in Asthmatic Children and Exposure to Ambient Air Pollutants," IJERPH, MDPI, vol. 13(8), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger Morbey & Gillian Smith & Karen Exley & André Charlett & Daniela de Angelis & Sally Harcourt & Felipe Gonzalez & Iain Lake & Alec Dobney & Alex Elliot, 2022. "Estimating the Impact of Air Pollution on Healthcare-Seeking Behaviour by Applying a Difference-in-Differences Method to Syndromic Surveillance Data," IJERPH, MDPI, vol. 19(12), pages 1-16, June.
    2. Eunseo Shin & Yeeun Shin & Suyeon Kim & Sangwoo Lee & Kyungjin An, 2023. "Identifying Particulate Matter Variances Based on Environmental Contexts: Installing and Surveying Real-Time Measuring Sensors," Land, MDPI, vol. 12(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asim Anwar & Muhammad Ayub & Noman Khan & Antoine Flahault, 2019. "Nexus between Air Pollution and Neonatal Deaths: A Case of Asian Countries," IJERPH, MDPI, vol. 16(21), pages 1-10, October.
    2. Pierre Masselot & Fateh Chebana & Taha B. M. J. Ouarda & Diane Bélanger & Pierre Gosselin, 2022. "Data-Enhancement Strategies in Weather-Related Health Studies," IJERPH, MDPI, vol. 19(2), pages 1-13, January.
    3. Agnieszka Jakubowska & Marcin Rabe, 2022. "Air Pollution and Limitations in Health: Identification of Inequalities in the Burdens of the Economies of the “Old” and “New” EU," Energies, MDPI, vol. 15(17), pages 1-16, August.
    4. Ghasem Toloo & Gerard FitzGerald & Peter Aitken & Kenneth Verrall & Shilu Tong, 2013. "Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(5), pages 667-681, October.
    5. Lawrence A. Palinkas & Jessenia De Leon & Kexin Yu & Erika Salinas & Cecilia Fernandez & Jill Johnston & Md Mostafijur Rahman & Sam J. Silva & Michael Hurlburt & Rob S. McConnell & Erika Garcia, 2023. "Adaptation Resources and Responses to Wildfire Smoke and Other Forms of Air Pollution in Low-Income Urban Settings: A Mixed-Methods Study," IJERPH, MDPI, vol. 20(7), pages 1-16, April.
    6. Noriko Takahashi & Rieko Nakao & Kayo Ueda & Masaji Ono & Masahide Kondo & Yasushi Honda & Masahiro Hashizume, 2015. "Community Trial on Heat Related-Illness Prevention Behaviors and Knowledge for the Elderly," IJERPH, MDPI, vol. 12(3), pages 1-27, March.
    7. Geraldine P. Y. Koo & Huili Zheng & Joel C. L. Aik & Benjamin Y. Q. Tan & Vijay K. Sharma & Ching Hui Sia & Marcus E. H. Ong & Andrew F. W. Ho, 2023. "Clustering of Environmental Parameters and the Risk of Acute Ischaemic Stroke," IJERPH, MDPI, vol. 20(6), pages 1-10, March.
    8. Alisa L. Hass & Kelsey N. Ellis & Lisa Reyes Mason & Jon M. Hathaway & David A. Howe, 2016. "Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States," IJERPH, MDPI, vol. 13(1), pages 1-19, January.
    9. Dianne Lowe & Kristie L. Ebi & Bertil Forsberg, 2011. "Heatwave Early Warning Systems and Adaptation Advice to Reduce Human Health Consequences of Heatwaves," IJERPH, MDPI, vol. 8(12), pages 1-26, December.
    10. Jagadeesh Puvvula & Azar M. Abadi & Kathryn C. Conlon & Jared J. Rennie & Hunter Jones & Jesse E. Bell, 2022. "Evaluating the Sensitivity of Heat Wave Definitions among North Carolina Physiographic Regions," IJERPH, MDPI, vol. 19(16), pages 1-13, August.
    11. Ching-Chang Cho & Wen-Yeh Hsieh & Chin-Hung Tsai & Cheng-Yi Chen & Hui-Fang Chang & Chih-Sheng Lin, 2018. "In Vitro and In Vivo Experimental Studies of PM 2.5 on Disease Progression," IJERPH, MDPI, vol. 15(7), pages 1-26, July.
    12. Tingru Yang & Wenling Liu, 2019. "Health Effects of Energy Intensive Sectors and the Potential Health Co-Benefits of a Low Carbon Industrial Transition in China," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    13. Dan Xu & Wenpeng Lin & Jun Gao & Yue Jiang & Lubing Li & Fei Gao, 2022. "PM 2.5 Exposure and Health Risk Assessment Using Remote Sensing Data and GIS," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    14. Karina Camasmie Abe & Simone Georges El Khouri Miraglia, 2016. "Health Impact Assessment of Air Pollution in São Paulo, Brazil," IJERPH, MDPI, vol. 13(7), pages 1-10, July.
    15. Leila Heidari & Andrea Winquist & Mitchel Klein & Cassandra O’Lenick & Andrew Grundstein & Stefanie Ebelt Sarnat, 2016. "Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA," IJERPH, MDPI, vol. 13(10), pages 1-17, October.
    16. Bo Sun & Bo Wang, 2021. "Spatial Spillover Effects of Air Pollution on the Health Expenditure of Rural Residents: Based on Spatial Durbin Model," IJERPH, MDPI, vol. 18(13), pages 1-11, July.
    17. Hung Chak Ho & Ka Ming Wai & Minhao He & Ta-Chien Chan & Chengbin Deng & Man Sing Wong, 2020. "Mortality risk of a future heat event across a subtropical city: implications for community planning and health policy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 623-637, August.
    18. Puwei Zhang & Li Wu & Rui Li, 2023. "Development Drivers of Rural Summer Health Tourism for the Urban Elderly: A Demand- and Supply-Based Framework," Sustainability, MDPI, vol. 15(13), pages 1-27, July.
    19. Geraldine P. Y. Koo & Huili Zheng & Pin Pin Pek & Fintan Hughes & Shir Lynn Lim & Jun Wei Yeo & Marcus E. H. Ong & Andrew F. W. Ho, 2022. "Clustering of Environmental Parameters and the Risk of Acute Myocardial Infarction," IJERPH, MDPI, vol. 19(14), pages 1-12, July.
    20. Raj P. Fadadu & John R. Balmes & Stephanie M. Holm, 2020. "Differences in the Estimation of Wildfire-Associated Air Pollution by Satellite Mapping of Smoke Plumes and Ground-Level Monitoring," IJERPH, MDPI, vol. 17(21), pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:12:p:2095-:d:239469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.