IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i1p376-d305788.html
   My bibliography  Save this article

Density-Based Separation of Microbial Functional Groups in Activated Sludge

Author

Listed:
  • Lin Li

    (Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA)

  • Yaqi You

    (Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA)

  • Krishna Pagilla

    (Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA)

Abstract

Mechanistic understanding of how activated sludge (AS) solids density influences wastewater treatment processing is limited. Because microbial groups often generate and store intracellular inclusions during certain metabolic processes, it is hypothesized that some microorganisms, like polyphosphate-accumulating organisms (PAOs), would have higher biomass densities. The present study developed a density-based separation approach and applied it to suspended growth AS in two full-scale domestic water resource recovery facilities (WRRFs). Incorporating quantitative real-time PCR (qPCR) and fluorescence in situ hybridization (FISH) analyses, the research demonstrated the effectiveness of density-based separation in enriching key microbial functional groups, including ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and PAOs, by up to 90-fold in target biomass fractions. It was observed that WRRF process functionalities have significant influence on density-based enrichment, such that maximum enrichments were achieved in the sludge fraction denser than 1.036 g/cm 3 for the enhanced biological phosphorus removal (EBPR) facility and in the sludge fraction lighter than 1.030 g/cm 3 for the non-EBPR facility. Our results provide important information on the relationship between biomass density and enrichment of microbial functional groups in AS, contributing to future designs of enhanced biological treatment processes for improved AS settleability and performance.

Suggested Citation

  • Lin Li & Yaqi You & Krishna Pagilla, 2020. "Density-Based Separation of Microbial Functional Groups in Activated Sludge," IJERPH, MDPI, vol. 17(1), pages 1-16, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:1:p:376-:d:305788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Strous & John A. Fuerst & Evelien H. M. Kramer & Susanne Logemann & Gerard Muyzer & Katinka T. van de Pas-Schoonen & Richard Webb & J. Gijs Kuenen & Mike S. M. Jetten, 1999. "Missing lithotroph identified as new planctomycete," Nature, Nature, vol. 400(6743), pages 446-449, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius-Daniel Roman & Cornel Sava & Dana-Adriana Iluțiu-Varvara & Roxana Mare & Lavinia-Lorena Pruteanu & Elena Maria Pică & Lorentz Jäntschi, 2022. "Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuanglei Huang & Daishe Wu, 2021. "Start-up Strategies for Anaerobic Ammonia Oxidation (Anammox) in In-Situ Nitrogen Removal from Polluted Groundwater in Rare Earth Mining Areas," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Yuan Wei & Yue Jin & Wenjie Zhang, 2020. "Domestic Sewage Treatment Using a One-Stage ANAMMOX Process," IJERPH, MDPI, vol. 17(9), pages 1-14, May.
    3. Tsung-Yueh Tsai & Wen-Yun Chen, 2022. "The Effect of Up-Flow Rate on the Nitrogen Treatment Efficiency and Sludge Characteristics of ANAMMOX Process with Up-Flow Anaerobic Sludge Bed Reactor," Sustainability, MDPI, vol. 14(24), pages 1-10, December.
    4. Liana Kemmou & Elisavet Amanatidou, 2023. "Factors Affecting Nitrous Oxide Emissions from Activated Sludge Wastewater Treatment Plants—A Review," Resources, MDPI, vol. 12(10), pages 1-26, September.
    5. Ping Han & Xiufeng Tang & Hanna Koch & Xiyang Dong & Lijun Hou & Danhe Wang & Qian Zhao & Zhe Li & Min Liu & Sebastian Lücker & Guitao Shi, 2024. "Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:1:p:376-:d:305788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.