IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6355-d406978.html
   My bibliography  Save this article

Are There Seasonal Variations in Faecal Contamination of Exposure Pathways? An Assessment in a Low–Income Settlement in Uganda

Author

Listed:
  • Patrick Ronoh

    (Environmental Engineering and Water Technology Department, IHE Delft Institute of Water Education, 2611 AX Delft, The Netherlands)

  • Claire Furlong

    (Environmental Engineering and Water Technology Department, IHE Delft Institute of Water Education, 2611 AX Delft, The Netherlands)

  • Frank Kansiime

    (Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, Kampala 7062, Uganda)

  • Richard Mugambe

    (Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala 7062, Uganda)

  • Damir Brdjanovic

    (Environmental Engineering and Water Technology Department, IHE Delft Institute of Water Education, 2611 AX Delft, The Netherlands)

Abstract

Sanitation infrastructure are not able to cope with the increasing population in low-income countries, which leaves populations exposed to faecal contamination from multiple pathways. This study evaluated public health risk (using SaniPath) in a low-income community during the dry season, to identify the dominant exposure pathways, and compare this data to existing data for the rainy season, questioning the assumption that risk of faecal contamination is higher in the rainy season. SaniPath was used to collect and assess exposure and environmental data, and to generate risk profiles for each pathway. In the dry season the highest exposure frequency was for bathing and street food, exposure frequency generally increased, and seasonal variation was found in five pathways. The highest hazards in the dry season were through contact with drains, soil, and street food. Seasonal variation was found in the contamination of open drains and street food, with higher levels of Escherichia coli ( E. coli ) in the dry season. Open drains were identified as the most dominant risk pathway in both seasons, but risk was higher in the dry season. This highlights the complex nature of seasonal variation of faecal risk, and questions the assumption that risk is higher in the rainy season.

Suggested Citation

  • Patrick Ronoh & Claire Furlong & Frank Kansiime & Richard Mugambe & Damir Brdjanovic, 2020. "Are There Seasonal Variations in Faecal Contamination of Exposure Pathways? An Assessment in a Low–Income Settlement in Uganda," IJERPH, MDPI, vol. 17(17), pages 1-19, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6355-:d:406978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Colin McFarlane & Renu Desai & Steve Graham, 2014. "Informal Urban Sanitation: Everyday Life, Poverty, and Comparison," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(5), pages 989-1011, September.
    2. Bukenya, James O., 2006. "Household Perceptions Of The Quality Of Drinking Water In Uganda," 2006 Annual Meeting, February 5-8, 2006, Orlando, Florida 35355, Southern Agricultural Economics Association.
    3. Robert Bain & Ryan Cronk & Jim Wright & Hong Yang & Tom Slaymaker & Jamie Bartram, 2014. "Fecal Contamination of Drinking-Water in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis," PLOS Medicine, Public Library of Science, vol. 11(5), pages 1-23, May.
    4. Cohen, Barney, 2006. "Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability," Technology in Society, Elsevier, vol. 28(1), pages 63-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    2. Ahsan Nawaz & Xing Su & Qaiser Mohi Ud Din & Muhammad Irslan Khalid & Muhammad Bilal & Syyed Adnan Raheel Shah, 2020. "Identification of the H&S (Health and Safety Factors) Involved in Infrastructure Projects in Developing Countries-A Sequential Mixed Method Approach of OLMT-Project," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    3. Alina Kulczyk-Dynowska & Agnieszka Stacherzak, 2022. "The Impact of a City on Its Environment: The Prism of Demography and Selected Environmental and Technical Aspects Based on the Case of Major Lower Silesian Cities," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    4. Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
    5. Zhixiong Tan & Haili Wu & Qingyang Chen & Jiejun Huang, 2024. "Spatiotemporal Analysis of Air Quality and Its Driving Factors in Beijing’s Main Urban Area," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    6. Qiting Zuo & Yixuan Diao & Lingang Hao & Chunhui Han, 2020. "Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4019-4035, October.
    7. Dinkelman, Taryn & Schulhofer-Wohl, Sam, 2015. "Migration, congestion externalities, and the evaluation of spatial investments," Journal of Development Economics, Elsevier, vol. 114(C), pages 189-202.
    8. Mari-Isabella Stan, 2022. "The impact of the pandemic crisis on employment in the context of urbanization," Technium Social Sciences Journal, Technium Science, vol. 33(1), pages 492-505, July.
    9. Zhen Yang & Jun Lei & Jian-Gang Li, 2019. "Identifying the Determinants of Urbanization in Prefecture-Level Cities in China: A Quantitative Analysis Based on Spatial Production Theory," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    10. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    11. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    12. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    13. Ulep, Valerie Gilbert T. & Ortiz, Danica Aisa P. & Go, John Juliard & Duante, Charmaine & Gonzales, Rosa C. & Mendoza, Laurita R. & Reyes, Clarissa & Elgo, Frances Rose & Aldeon, Melanie P., 2012. "Inequities in Noncommunicable Diseases," Discussion Papers DP 2012-04, Philippine Institute for Development Studies.
    14. Ayse Ercumen & Benjamin F Arnold, 2015. "Upgrading a Piped Water Supply from Intermittent to Continuous Delivery and Association with Waterborne Illness: A Matched Cohort Study in Urban India," Working Papers id:7729, eSocialSciences.
    15. Rudke, Anderson Paulo & Martins, Jorge Alberto & dos Santos, Alex Mota & Silva, Witan Pereira & Caldana, Nathan F. da Silva & Souza, Vinicius A.S. & Alves, Ronaldo Adriano & de Almeida Albuquerque, Ta, 2021. "Spatial and socio-economic analysis of public transport systems in large cities: A case study for Belo Horizonte, Brazil," Journal of Transport Geography, Elsevier, vol. 91(C).
    16. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    17. Fran Tonkiss, 2015. "Afterword: Economies of infrastructure," City, Taylor & Francis Journals, vol. 19(2-3), pages 384-391, June.
    18. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    19. Nina Savela & Jarkko Levänen & Sara Lindeman & Nnenesi Kgabi & Heikki Koivisto & Meri Olenius & Samuel John & Damas Mashauri & Minna M. Keinänen-Toivola, 2020. "Rapid Urbanization and Infrastructure Pressure: Comparing the Sustainability Transition Potential of Water and Energy Regimes in Namibia," World, MDPI, vol. 1(2), pages 1-18, July.
    20. Leslie Gray & Laureen Elgert & Antoinette WinklerPrins, 2020. "Theorizing urban agriculture: north–south convergence," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(3), pages 869-883, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6355-:d:406978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.