IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6324-d406393.html
   My bibliography  Save this article

Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach

Author

Listed:
  • Adolfo Hilario-Caballero

    (Institute of Control Systems and Industrial Computing (ai2), Universitat Politècnica de València, 46022 Valencia, Spain)

  • Ana Garcia-Bernabeu

    (Campus of Alcoi, Universitat Politècnica de València, 03801 Alcoi, Spain)

  • Jose Vicente Salcedo

    (Institute of Control Systems and Industrial Computing (ai2), Universitat Politècnica de València, 46022 Valencia, Spain)

  • Marisa Vercher

    (Campus of Alcoi, Universitat Politècnica de València, 03801 Alcoi, Spain)

Abstract

Sustainable finance, which integrates environmental, social and governance criteria on financial decisions rests on the fact that money should be used for good purposes. Thus, the financial sector is also expected to play a more important role to decarbonise the global economy. To align financial flows with a pathway towards a low-carbon economy, investors should be able to integrate into their financial decisions additional criteria beyond return and risk to manage climate risk. We propose a tri-criterion portfolio selection model to extend the classical Markowitz’s mean-variance approach to include investor’s preferences on the portfolio carbon risk exposure as an additional criterion. To approximate the 3D Pareto front we apply an efficient multi-objective genetic algorithm called ev-MOGA which is based on the concept of ε -dominance. Furthermore, we introduce a-posteriori approach to incorporate the investor’s preferences into the solution process regarding their climate-change related preferences measured by the carbon risk exposure and their loss-adverse attitude. We test the performance of the proposed algorithm in a cross-section of European socially responsible investments open-end funds to assess the extent to which climate-related risk could be embedded in the portfolio according to the investor’s preferences.

Suggested Citation

  • Adolfo Hilario-Caballero & Ana Garcia-Bernabeu & Jose Vicente Salcedo & Marisa Vercher, 2020. "Tri-Criterion Model for Constructing Low-Carbon Mutual Fund Portfolios: A Preference-Based Multi-Objective Genetic Algorithm Approach," IJERPH, MDPI, vol. 17(17), pages 1-15, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6324-:d:406393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babaei, Sadra & Sepehri, Mohammad Mehdi & Babaei, Edris, 2015. "Multi-objective portfolio optimization considering the dependence structure of asset returns," European Journal of Operational Research, Elsevier, vol. 244(2), pages 525-539.
    2. Ana B. Ruiz & Rubén Saborido & José D. Bermúdez & Mariano Luque & Enriqueta Vercher, 2020. "Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences," Journal of Global Optimization, Springer, vol. 76(2), pages 295-315, February.
    3. Dimitris Bertsimas & Romy Shioda, 2009. "Algorithm for cardinality-constrained quadratic optimization," Computational Optimization and Applications, Springer, vol. 43(1), pages 1-22, May.
    4. Yabao Hu & Hanning Chen & Maowei He & Liling Sun & Rui Liu & Hai Shen, 2019. "Multi-Swarm Multi-Objective Optimizer Based on - Optimality Criteria for Multi-Objective Portfolio Management," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-22, January.
    5. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    6. Utz, Sebastian & Wimmer, Maximilian & Steuer, Ralph E., 2015. "Tri-criterion modeling for constructing more-sustainable mutual funds," European Journal of Operational Research, Elsevier, vol. 246(1), pages 331-338.
    7. Syam, Siddhartha S., 1998. "A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals," European Journal of Operational Research, Elsevier, vol. 108(1), pages 196-207, July.
    8. Utz, Sebastian & Wimmer, Maximilian & Hirschberger, Markus & Steuer, Ralph E., 2014. "Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds," European Journal of Operational Research, Elsevier, vol. 234(2), pages 491-498.
    9. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    10. Philipp Krueger & Zacharias Sautner & Laura T Starks, 2020. "The Importance of Climate Risks for Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1067-1111.
    11. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    12. Duan Li & Xiaoling Sun & Jun Wang, 2006. "Optimal Lot Solution To Cardinality Constrained Mean–Variance Formulation For Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 83-101, January.
    13. Markus Hirschberger & Ralph E. Steuer & Sebastian Utz & Maximilian Wimmer & Yue Qi, 2013. "Computing the Nondominated Surface in Tri-Criterion Portfolio Selection," Operations Research, INFORMS, vol. 61(1), pages 169-183, February.
    14. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    15. K. Liagkouras & K. Metaxiotis, 2018. "A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem," Annals of Operations Research, Springer, vol. 267(1), pages 281-319, August.
    16. Massimiliano Kaucic & Mojtaba Moradi & Mohmmad Mirzazadeh, 2019. "Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garcia-Bernabeu, Ana & Hilario-Caballero, Adolfo & Tardella, Fabio & Pla-Santamaria, David, 2024. "ESG integration in portfolio selection: A robust preference-based multicriteria approach," Operations Research Perspectives, Elsevier, vol. 12(C).
    2. Jeremi Assael & Laurent Carlier & Damien Challet, 2022. "Dissecting the explanatory power of ESG features on equity returns by sector, capitalization, and year with interpretable machine learning," Working Papers hal-03791538, HAL.
    3. Jérémi Assael & Laurent Carlier & Damien Challet, 2023. "Dissecting the Explanatory Power of ESG Features on Equity Returns by Sector, Capitalization, and Year with Interpretable Machine Learning," JRFM, MDPI, vol. 16(3), pages 1-22, March.
    4. Zhu, Qing & Lu, Kai & Liu, Shan & Ruan, Yinglin & Wang, Lin & Yang, Sung-Byung, 2022. "Can low-carbon value bring high returns? Novel quantitative trading from portfolio-of-investment targets in a new-energy market," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 755-769.
    5. Yeudiel Lara Moreno & Carlos Ignacio Hernández Castellanos, 2024. "A Hierarchical Approach to a Tri-Objective Portfolio Optimization Problem Considering an ESG Index," Mathematics, MDPI, vol. 12(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.
    2. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    3. A. Hilario-Caballero & A. Garcia-Bernabeu & J. V. Salcedo & M. Vercher, 2020. "Tri-criterion model for constructing low-carbon mutual fund portfolios: a preference-based multi-objective genetic algorithm approach," Papers 2006.11888, arXiv.org.
    4. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    5. Davide Lauria & W. Brent Lindquist & Stefan Mittnik & Svetlozar T. Rachev, 2022. "ESG-Valued Portfolio Optimization and Dynamic Asset Pricing," Papers 2206.02854, arXiv.org.
    6. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    7. K. Liagkouras & K. Metaxiotis, 2018. "A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem," Annals of Operations Research, Springer, vol. 267(1), pages 281-319, August.
    8. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    9. Florian Methling & Rüdiger Nitzsch, 2019. "Thematic portfolio optimization: challenging the core satellite approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 133-154, June.
    10. Jyotirmayee Behera & Pankaj Kumar, 2024. "Implementation of machine learning in $$\ell _{\infty }$$ ℓ ∞ -based sparse Sharpe ratio portfolio optimization: a case study on Indian stock market," Operational Research, Springer, vol. 24(4), pages 1-26, December.
    11. Massimiliano Kaucic & Filippo Piccotto & Gabriele Sbaiz & Giorgio Valentinuz, 2023. "Optimal Portfolio with Sustainable Attitudes under Cumulative Prospect Theory," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(4), pages 1-4.
    12. Zhi-Long Dong & Fengmin Xu & Yu-Hong Dai, 2020. "Fast algorithms for sparse portfolio selection considering industries and investment styles," Journal of Global Optimization, Springer, vol. 78(4), pages 763-789, December.
    13. Wei Xu & Jie Tang & Ka Fai Cedric Yiu & Jian Wen Peng, 2024. "An Efficient Global Optimal Method for Cardinality Constrained Portfolio Optimization," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 690-704, March.
    14. Nasim Dehghan Hardoroudi & Abolfazl Keshvari & Markku Kallio & Pekka Korhonen, 2017. "Solving cardinality constrained mean-variance portfolio problems via MILP," Annals of Operations Research, Springer, vol. 254(1), pages 47-59, July.
    15. Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Empirical Performance of an ESG Assets Portfolio from US Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
    16. Xiaojin Zheng & Xiaoling Sun & Duan Li & Jie Sun, 2014. "Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 379-397, October.
    17. Gallucci, Carmen & Santulli, Rosalia & Lagasio, Valentina, 2022. "The conceptualization of environmental, social and governance risks in portfolio studies A systematic literature review," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    18. K. Liagkouras & K. Metaxiotis & G. Tsihrintzis, 2022. "Incorporating environmental and social considerations into the portfolio optimization process," Annals of Operations Research, Springer, vol. 316(2), pages 1493-1518, September.
    19. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    20. Zhou, Zhongbao & Xiao, Helu & Jin, Qianying & Liu, Wenbin, 2018. "DEA frontier improvement and portfolio rebalancing: An application of China mutual funds on considering sustainability information disclosure," European Journal of Operational Research, Elsevier, vol. 269(1), pages 111-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6324-:d:406393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.