IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6274-d405544.html
   My bibliography  Save this article

How Did Distribution Patterns of Particulate Matter Air Pollution (PM 2.5 and PM 10 ) Change in China during the COVID-19 Outbreak: A Spatiotemporal Investigation at Chinese City-Level

Author

Listed:
  • Zhiyu Fan

    (School of Urban Design, Wuhan University, 8 Donghu South Road, Wuhan 430072, China
    Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China)

  • Qingming Zhan

    (School of Urban Design, Wuhan University, 8 Donghu South Road, Wuhan 430072, China
    Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China)

  • Chen Yang

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Huimin Liu

    (Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China)

  • Meng Zhan

    (School of Urban Design, Wuhan University, 8 Donghu South Road, Wuhan 430072, China
    Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China)

Abstract

Due to the suspension of traffic mobility and industrial activities during the COVID-19, particulate matter (PM) pollution has decreased in China. However, rarely have research studies discussed the spatiotemporal pattern of this change and related influencing factors at city-scale across the nation. In this research, the clustering patterns of the decline rates of PM 2.5 and PM 10 during the period from 20 January to 8 April in 2020, compared with the same period of 2019, were investigated using spatial autocorrelation analysis. Four meteorological factors and two socioeconomic factors, i.e., the decline of intra-city mobility intensity (dIMI) representing the effect of traffic mobility and the decline rates of the secondary industrial output values (drSIOV), were adopted in the regression analysis. Then, multi-scale geographically weighted regression (MGWR), a model allowing the particular processing scale for each independent variable, was applied for investigating the relationship between PM pollution reductions and influencing factors. For comparison, ordinary least square (OLS) regression and the classic geographically weighted regression (GWR) were also performed. The research found that there were 16% and 20% reduction of PM 2.5 and PM 10 concentration across China and significant PM pollution mitigation in central, east, and south regions of China. As for the regression analysis results, MGWR outperformed the other two models, with R 2 of 0.711 and 0.732 for PM 2.5 and PM 10 , respectively. The results of MGWR revealed that the two socioeconomic factors had more significant impacts than meteorological factors. It showed that the reduction of traffic mobility caused more relative declines of PM 2.5 in east China (e.g., cities in Jiangsu), while it caused more relative declines of PM 10 in central China (e.g., cities in Henan). The reduction of industrial operation had a strong relationship with the PM 10 drop in northeast China. The results are crucial for understanding how the decline pattern of PM pollution varied spatially during the COVID-19 outbreak, and it also provides a good reference for air pollution control in the future.

Suggested Citation

  • Zhiyu Fan & Qingming Zhan & Chen Yang & Huimin Liu & Meng Zhan, 2020. "How Did Distribution Patterns of Particulate Matter Air Pollution (PM 2.5 and PM 10 ) Change in China during the COVID-19 Outbreak: A Spatiotemporal Investigation at Chinese City-Level," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6274-:d:405544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    2. Qianqian Yang & Qiangqiang Yuan & Tongwen Li & Huanfeng Shen & Liangpei Zhang, 2017. "The Relationships between PM 2.5 and Meteorological Factors in China: Seasonal and Regional Variations," IJERPH, MDPI, vol. 14(12), pages 1-19, December.
    3. Dong, Qichen & Lin, Yongyi & Huang, Jieyu & Chen, Zhongfei, 2020. "Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data," China Economic Review, Elsevier, vol. 59(C).
    4. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youru Yao & Kang Ma & Cheng He & Yong Zhang & Yuesheng Lin & Fengman Fang & Shiyin Li & Huan He, 2023. "Urban Surface Ozone Concentration in Mainland China during 2015–2020: Spatial Clustering and Temporal Dynamics," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Yuyi Zhang & Qiushi Sun & Jing Liu & Ovanes Petrosian, 2023. "Long-Term Forecasting of Air Pollution Particulate Matter (PM2.5) and Analysis of Influencing Factors," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    3. Marija Jevtic & Vlatka Matkovic & Milica Paut Kusturica & Catherine Bouland, 2022. "Build Healthier: Post-COVID-19 Urban Requirements for Healthy and Sustainable Living," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    4. Zihan Tong & Zhenxing Kong & Xiao Jia & Hanyue Zhang & Yimin Zhang, 2022. "Multiscale Impact of Environmental and Socio-Economic Factors on Low Physical Fitness among Chinese Adolescents and Regionalized Coping Strategies," IJERPH, MDPI, vol. 19(20), pages 1-24, October.
    5. Pengzhi Wei & Shaofeng Xie & Liangke Huang & Lilong Liu, 2021. "Ingestion of GNSS-Derived ZTD and PWV for Spatial Interpolation of PM 2.5 Concentration in Central and Southern China," IJERPH, MDPI, vol. 18(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqing Zhou & Haibin Liu, 2023. "Temporal and Spatial Distribution of Ozone and Its Influencing Factors in China," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    2. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    3. Jiajia Chen & Huanfeng Shen & Tongwen Li & Xiaolin Peng & Hairong Cheng & Chenyan Ma, 2019. "Temporal and Spatial Features of the Correlation between PM 2.5 and O 3 Concentrations in China," IJERPH, MDPI, vol. 16(23), pages 1-17, November.
    4. Tuo Shi & Yuanman Hu & Miao Liu & Chunlin Li & Chuyi Zhang & Chong Liu, 2020. "How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    5. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    6. Abdulmuhsin S. Shihab, 2024. "Meteorological effects on particulate matter PM10, PM2.5 concentrations with diurnal and seasonal variations in cities neighboring desert lands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11293-11321, September.
    7. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    8. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    9. Shichao Lu & Zhihua Zhang & M. James C. Crabbe & Prin Suntichaikul, 2024. "Effects of Urban Land-Use Planning on Housing Prices in Chiang Mai, Thailand," Land, MDPI, vol. 13(8), pages 1-13, July.
    10. Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2021. "Moving towards a sustainable and innovative city: Internal urban traffic accessibility and high-level innovation based on platform monitoring data," International Journal of Production Economics, Elsevier, vol. 235(C).
    11. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    12. Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    13. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    14. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    15. Moore, David & Webb, Amanda L., 2022. "Evaluating energy burden at the urban scale: A spatial regression approach in Cincinnati, Ohio," Energy Policy, Elsevier, vol. 160(C).
    16. Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
    17. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    18. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    19. Yongxin Liu & Yiting Wang & Yiwen Lin & Xiaoqing Ma & Shifa Guo & Qianru Ouyang & Caige Sun, 2023. "Habitat Quality Assessment and Driving Factors Analysis of Guangdong Province, China," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    20. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6274-:d:405544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.