IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6161-d403634.html
   My bibliography  Save this article

Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework

Author

Listed:
  • Qiong Jia

    (Department of Management, Hohai Business School, Hohai University, Nanjing 211100, China)

  • Yue Guo

    (The Department of Information System and Management Engineering, Faculty of Business, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China)

  • Guanlin Wang

    (Department of Management, Hohai Business School, Hohai University, Nanjing 211100, China)

  • Stuart J. Barnes

    (CODA Research Centre, King’s Business School, King’s College London, Bush House, 30 Aldwych, London WC2B 4BG, UK)

Abstract

Major public health incidents such as COVID-19 typically have characteristics of being sudden, uncertain, and hazardous. If a government can effectively accumulate big data from various sources and use appropriate analytical methods, it may quickly respond to achieve optimal public health decisions, thereby ameliorating negative impacts from a public health incident and more quickly restoring normality. Although there are many reports and studies examining how to use big data for epidemic prevention, there is still a lack of an effective review and framework of the application of big data in the fight against major public health incidents such as COVID-19, which would be a helpful reference for governments. This paper provides clear information on the characteristics of COVID-19, as well as key big data resources, big data for the visualization of pandemic prevention and control, close contact screening, online public opinion monitoring, virus host analysis, and pandemic forecast evaluation. A framework is provided as a multidimensional reference for the effective use of big data analytics technology to prevent and control epidemics (or pandemics). The challenges and suggestions with respect to applying big data for fighting COVID-19 are also discussed.

Suggested Citation

  • Qiong Jia & Yue Guo & Guanlin Wang & Stuart J. Barnes, 2020. "Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework," IJERPH, MDPI, vol. 17(17), pages 1-21, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6161-:d:403634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    2. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    3. David M. Morens & Gregory K. Folkers & Anthony S. Fauci, 2004. "The challenge of emerging and re-emerging infectious diseases," Nature, Nature, vol. 430(6996), pages 242-249, July.
    4. Keogh-Brown, Marcus Richard & Smith, Richard David, 2008. "The economic impact of SARS: How does the reality match the predictions?," Health Policy, Elsevier, vol. 88(1), pages 110-120, October.
    5. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    6. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    7. David A Broniatowski & Michael J Paul & Mark Dredze, 2013. "National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changcheng Kan & Qiwei Ma & Zhaoya Gong & Yuanjing Qi & Anrong Dang, 2022. "The Recovery of China’s Industrial Parks in the First Wave of COVID-19," IJERPH, MDPI, vol. 19(22), pages 1-15, November.
    2. Senthil Kumar Jagatheesaperumal & Snegha Rajkumar & Joshinika Venkatesh Suresh & Abdu H. Gumaei & Noura Alhakbani & Md. Zia Uddin & Mohammad Mehedi Hassan, 2023. "An IoT-Based Framework for Personalized Health Assessment and Recommendations Using Machine Learning," Mathematics, MDPI, vol. 11(12), pages 1-21, June.
    3. Intan Nurma Yulita & Victor Wijaya & Rudi Rosadi & Indra Sarathan & Yusa Djuyandi & Anton Satria Prabuwono, 2023. "Analysis of Government Policy Sentiment Regarding Vacation during the COVID-19 Pandemic Using the Bidirectional Encoder Representation from Transformers (BERT)," Data, MDPI, vol. 8(3), pages 1-17, February.
    4. Kurubaran Ganasegeran & Mohd Fadzly Amar Jamil & Maheshwara Rao Appannan & Alan Swee Hock Ch’ng & Irene Looi & Kalaiarasu M. Peariasamy, 2022. "Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    5. Elif Bozkaya & Levent Eriskin & Mumtaz Karatas, 2023. "Data analytics during pandemics: a transportation and location planning perspective," Annals of Operations Research, Springer, vol. 328(1), pages 193-244, September.
    6. Biresh Kumar & Sharmistha Roy & Anurag Sinha & Celestine Iwendi & Ľubomíra Strážovská, 2022. "E-Commerce Website Usability Analysis Using the Association Rule Mining and Machine Learning Algorithm," Mathematics, MDPI, vol. 11(1), pages 1-24, December.
    7. Galetsi, Panagiota & Katsaliaki, Korina & Kumar, Sameer, 2022. "The medical and societal impact of big data analytics and artificial intelligence applications in combating pandemics: A review focused on Covid-19," Social Science & Medicine, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    2. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    3. Dan Yue & Zepeng Tong & Jianchi Tian & Yang Li & Linxiu Zhang & Yan Sun, 2021. "Anthropomorphic Strategies Promote Wildlife Conservation through Empathy: The Moderation Role of the Public Epidemic Situation," IJERPH, MDPI, vol. 18(7), pages 1-14, March.
    4. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    6. Ivan Montiel & Junghoon Park & Bryan W. Husted & Andres Velez-Calle, 2022. "Tracing the connections between international business and communicable diseases," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1785-1804, October.
    7. Shahadat Uddin & Arif Khan & Haohui Lu & Fangyu Zhou & Shakir Karim, 2022. "Suburban Road Networks to Explore COVID-19 Vulnerability and Severity," IJERPH, MDPI, vol. 19(4), pages 1-9, February.
    8. Kirsten R.C. Hensgens & Inge H.T. van Rensen & Anita W. Lekx & Frits H.M. van Osch & Lieve H.H. Knarren & Caroline E. Wyers & Joop P. van den Bergh & Dennis G. Barten, 2021. "Sort and Sieve: Pre-Triage Screening of Patients with Suspected COVID-19 in the Emergency Department," IJERPH, MDPI, vol. 18(17), pages 1-11, September.
    9. Quan-Hoang Vuong & Tam-Tri Le & Viet-Phuong La & Huyen Thanh Thanh Nguyen & Manh-Toan Ho & Quy Khuc & Minh-Hoang Nguyen, 2022. "Covid-19 vaccines production and societal immunization under the serendipity-mindsponge-3D knowledge management theory and conceptual framework," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    10. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    12. Graziella Orrù & Ciro Conversano & Eleonora Malloggi & Francesca Francesconi & Rebecca Ciacchini & Angelo Gemignani, 2020. "Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    13. Gleidson Sobreira Leite & Adriano Bessa Albuquerque & Plácido Rogerio Pinheiro, 2021. "Applications of Technological Solutions in Primary Ways of Preventing Transmission of Respiratory Infectious Diseases—A Systematic Literature Review," IJERPH, MDPI, vol. 18(20), pages 1-50, October.
    14. Britton Boras & Rhys M. Jones & Brandon J. Anson & Dan Arenson & Lisa Aschenbrenner & Malina A. Bakowski & Nathan Beutler & Joseph Binder & Emily Chen & Heather Eng & Holly Hammond & Jennifer Hammond , 2021. "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    15. Susanne Kessler & Bradly Burke & Geoffroy Andrieux & Jan Schinköthe & Lea Hamberger & Johannes Kacza & Shijun Zhan & Clara Reasoner & Taru S. Dutt & Maria Kaukab Osman & Marcela Henao-Tamayo & Julian , 2024. "Deciphering bat influenza H18N11 infection dynamics in male Jamaican fruit bats on a single-cell level," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    17. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    18. Fabiana Fiasca & Mauro Minelli & Dominga Maio & Martina Minelli & Ilaria Vergallo & Stefano Necozione & Antonella Mattei, 2020. "Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO 2 : A Nationwide Observational Study in Italy," IJERPH, MDPI, vol. 17(24), pages 1-10, December.
    19. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    20. Małgorzata Dudzińska & Marta Gwiaździńska-Goraj & Aleksandra Jezierska-Thöle, 2022. "Social Factors as Major Determinants of Rural Development Variation for Predicting Epidemic Vulnerability: A Lesson for the Future," IJERPH, MDPI, vol. 19(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6161-:d:403634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.