IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i15p5307-d388690.html
   My bibliography  Save this article

Risk Assessment of High-Speed Rail Projects: A Risk Coupling Model Based on System Dynamics

Author

Listed:
  • Yutong Xue

    (School of Management Science & Real Estate, Chongqing University, Chongqing 400045, China)

  • Pengcheng Xiang

    (School of Management Science & Real Estate, Chongqing University, Chongqing 400045, China
    International Research Center for Sustainable Built Environment, Chongqing University, Chongqing 400045, China
    Construction Economics and Management Research Center, Chongqing University, Chongqing 400045, China)

  • Fuyuan Jia

    (School of Management Science & Real Estate, Chongqing University, Chongqing 400045, China)

  • Zhaowen Liu

    (Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CN Delft, The Netherlands)

Abstract

Due to their characteristics and multiple objectives, high-speed rail (HSR) projects carry more complex risks than conventional projects and high correlation and conductivity are among the associated risk factors. Previous risk assessment frameworks for rail infrastructure have ignored the effects of risk interactions that inflate risk levels, namely, risk coupling effects. Based on a system dynamics method, this paper develops a risk coupling model for HSR project risk assessments. A risk factor list is established from a literature review, and relationships analysed using a case study and expert interviews. System dynamics equations are constructed and their parameters obtained by expert evaluations of risk factors. The proposed model is applied to a real-world HSR project to demonstrate it in detail. The model can evaluate the risk levels of HSR projects during a simulation period. In particular, it can identify the key coupling effects that are the main increased risk. It provides a significant resource, using which HSR project managers can identify and mitigate risks.

Suggested Citation

  • Yutong Xue & Pengcheng Xiang & Fuyuan Jia & Zhaowen Liu, 2020. "Risk Assessment of High-Speed Rail Projects: A Risk Coupling Model Based on System Dynamics," IJERPH, MDPI, vol. 17(15), pages 1-27, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5307-:d:388690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/15/5307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/15/5307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    2. Farnad Nasirzadeh & Abbas Afshar & Mostafa Khanzadi & Susan Howick, 2008. "Integrating system dynamics and fuzzy logic modelling for construction risk management," Construction Management and Economics, Taylor & Francis Journals, vol. 26(11), pages 1197-1212.
    3. Marle, Franck & Vidal, Ludovic-Alexandre & Bocquet, Jean-Claude, 2013. "Interactions-based risk clustering methodologies and algorithms for complex project management," International Journal of Production Economics, Elsevier, vol. 142(2), pages 225-234.
    4. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    5. Yongzhi Chang & Yang Yang & Suocheng Dong, 2018. "Comprehensive Sustainability Evaluation of High-Speed Railway (HSR) Construction Projects Based on Unascertained Measure and Analytic Hierarchy Process," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    6. Chenxi Li & Zenglei Xi, 2019. "Social Stability Risk Assessment of Land Expropriation: Lessons from the Chinese Case," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    7. Lei Jin & Yuanhua Chang & Xianwei Ju & Fei Xu, 2019. "A Study on the Sustainable Development of Water, Energy, and Food in China," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    8. A. V. Thomas & Satyanarayana Kalidindi & L. S. Ganesh, 2006. "Modelling and assessment of critical risks in BOT road projects," Construction Management and Economics, Taylor & Francis Journals, vol. 24(4), pages 407-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2024. "Risk assessment of utility tunnels through risk interaction-based deep learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Xiaoxiao Geng & Yongwei Lv & Li Zhao & Yingchen Wang, 2023. "Measurement and Simulation of Risk Coupling in Port Hazardous Chemical Logistics," IJERPH, MDPI, vol. 20(5), pages 1-27, February.
    3. Yong Zhang & Qi Zhang & Xiang Zhang & Meng Li & Guoqing Qi, 2024. "How Do We Analyze the Accident Causation of Shield Construction of Water Conveyance Tunnels? A Method Based on the N-K Model and Complex Network," Mathematics, MDPI, vol. 12(20), pages 1-30, October.
    4. Bugalia, Nikhil & Maemura, Yu & Dasari, Rohit & Patidar, Manoj, 2023. "A system dynamics model for effective management strategies of High-Speed Railway (HSR) projects involving private sector participation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    5. Debroy, Arindam & Dadsena, Krishna Kumar & Bhattacharjee, Pushparenu & Verma, Anuj & Verma, Meenakshi, 2024. "Evaluating the inhibitors in the growth of high-speed railway in India: A multi-stakeholder perspective," Transport Policy, Elsevier, vol. 155(C), pages 93-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hany Abd Elshakour Mohamed & Ahmed Ibrahim Eltohamy, 2022. "Critical Success Factors for Competitiveness of Egyptian Construction Companies," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    2. Akbari Ahmadabadi, Ali & Heravi, Gholamreza, 2019. "Risk assessment framework of PPP-megaprojects focusing on risk interaction and project success," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 169-188.
    3. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    5. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    6. Chen, Lu & Li, Yong-Quan & Liu, Chih-Hsing, 2019. "How airline service quality determines the quantity of repurchase intention - Mediate and moderate effects of brand quality and perceived value," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 185-197.
    7. Cristina López & Rocío Ruíz-Benítez & Carmen Vargas-Machuca, 2019. "On the Environmental and Social Sustainability of Technological Innovations in Urban Bus Transport: The EU Case," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    8. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    9. Vicente Rodríguez Montequín & Joaquín Villanueva Balsera & Sonia María Cousillas Fernández & Francisco Ortega Fernández, 2018. "Exploring Project Complexity through Project Failure Factors: Analysis of Cluster Patterns Using Self-Organizing Maps," Complexity, Hindawi, vol. 2018, pages 1-17, May.
    10. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    11. Hu, Yue & Dai, Liang & Fuellhart, Kurt & Witlox, Frank, 2024. "Examining competition among airline regarding route portfolios at domestic hubs under government regulation: The case of China's aviation market," Journal of Air Transport Management, Elsevier, vol. 116(C).
    12. Isler, Cassiano Augusto & Blumenfeld, Marcelo & Caldeira, Gabriel Pereira & Roberts, Clive, 2024. "Long-Distance railway mode choice in Brazil: Evidence from a discrete choice experiment," Research in Transportation Economics, Elsevier, vol. 104(C).
    13. Chang Han & Leishan Zhou & Bin Guo & Yixiang Yue & Wenqiang Zhao & Zeyu Wang & Hanxiao Zhou, 2023. "An Integrated Strategy for Rescheduling High-Speed Train Operation under Single-Direction Disruption," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    14. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    15. Paul R. Garvey & Richard A. Moynihan & Les Servi, 2013. "A macro method for measuring economic‐benefit returns on cybersecurity investments: The table top approach," Systems Engineering, John Wiley & Sons, vol. 16(3), pages 313-328, September.
    16. Reza Kiani Mavi & Denise Gengatharen & Neda Kiani Mavi & Richard Hughes & Alistair Campbell & Ross Yates, 2021. "Sustainability in Construction Projects: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    17. Liu, Zhongmei & Zhu, A-Xing & Zhang, Wenxin & Ren, Mei, 2021. "An improved potential-based approach to measuring the daily accessibility of HSR," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 271-284.
    18. Yacov Y. Haimes, 2011. "Responses to Terje Aven's Paper: On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience," Risk Analysis, John Wiley & Sons, vol. 31(5), pages 689-692, May.
    19. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    20. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5307-:d:388690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.