IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i9p1483-d226164.html
   My bibliography  Save this article

Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis

Author

Listed:
  • Eun-Min Cho

    (Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Korea)

  • Hyong Jin Hong

    (Institute of Risk Assessment, Seokyeong University, Seoul 02713, Korea
    Department of Nano and Biological Engineering, Seokyeong University, Seoul 02713, Korea)

  • Si Hyun Park

    (Institute of Risk Assessment, Seokyeong University, Seoul 02713, Korea
    Department of Nano and Biological Engineering, Seokyeong University, Seoul 02713, Korea)

  • Dan Ki Yoon

    (Institute of Risk Assessment, Seokyeong University, Seoul 02713, Korea
    Department of Nano and Biological Engineering, Seokyeong University, Seoul 02713, Korea)

  • Sun Ju Nam Goung

    (Institute of Risk Assessment, Seokyeong University, Seoul 02713, Korea
    Department of Nano and Biological Engineering, Seokyeong University, Seoul 02713, Korea)

  • Cheol Min Lee

    (Institute of Risk Assessment, Seokyeong University, Seoul 02713, Korea
    Department of Nano and Biological Engineering, Seokyeong University, Seoul 02713, Korea)

Abstract

The aim of this study was to support management of airborne bacteria in facilities used by pollution-sensitive individuals (in daycares, medical facilities, elder care facilities, and postnatal care centers). A field survey was conducted on 11 facilities from October 2017 to April 2018. Elder care facilities in industrial, urban, and forested areas were excluded. Two indoor, and one outdoor, measuring points were selected per facility. These points were located in areas most often used by the residents. Measurements were taken at random time-points before February 2018 and at specific times in the morning and afternoon thereafter. The relationships among bacterial counts, carbon dioxide concentrations, dust levels, temperature, relative humidity, and ventilation were examined. The pooled average bacterial counts at the daycares, medical facilities, elder care facilities, and postnatal care centers were 540.25 CFU m −3 , 245.49 CFU m −3 , 149.63 CFU m −3 , and 169.65 CFU m −3 , respectively. Considering the upper 95% confidence interval, the bacterial counts in many daycares may in fact be >800 CFU m −3 , which is the threshold set by the Korean Ministry of the Environment. The pooled average indoor: outdoor bacterial count ratio was 1.13. Indoor airborne bacterial counts were influenced mainly by their sources. This study found no significant correlations among indoor temperature, relative humidity, carbon dioxide concentration, dust levels, and airborne bacterial counts, unlike previous studies. Airborne bacteria management at daycares should be a top priority. The sources of airborne bacteria must also be identified, and a management plan must be developed to control them.

Suggested Citation

  • Eun-Min Cho & Hyong Jin Hong & Si Hyun Park & Dan Ki Yoon & Sun Ju Nam Goung & Cheol Min Lee, 2019. "Distribution and Influencing Factors of Airborne Bacteria in Public Facilities Used by Pollution-Sensitive Population: A Meta-Analysis," IJERPH, MDPI, vol. 16(9), pages 1-12, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1483-:d:226164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/9/1483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/9/1483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirk R. Smith, 2003. "Indoor Air Pollution," World Bank Publications - Reports 9723, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluigi De Gennaro & Paolo Rosario Dambruoso & Alessia Di Gilio & Valerio Di Palma & Annalisa Marzocca & Maria Tutino, 2015. "Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System," IJERPH, MDPI, vol. 13(1), pages 1-9, December.
    2. Bond, M. & Fuller, R.J. & Aye, Lu, 2012. "Sizing solar home systems for optimal development impact," Energy Policy, Elsevier, vol. 42(C), pages 699-709.
    3. Stephanie L. Martin & Jennifer K. Arney & Lisa M. Mueller & Edward Kumakech & Fiona Walugembe & Emmanuel Mugisha, 2013. "Using Formative Research to Design a Behavior Change Strategy to Increase the Use of Improved Cookstoves in Peri-Urban Kampala, Uganda," IJERPH, MDPI, vol. 10(12), pages 1-19, December.
    4. Garg, Amit, 2011. "Pro-equity Effects of Ancillary Benefits of Climate Change Policies: A Case Study of Human Health Impacts of Outdoor Air Pollution in New Delhi," World Development, Elsevier, vol. 39(6), pages 1002-1025, June.
    5. Elizabeth Hendrickson & Art Whatley, 2011. "Reducing Indoor Air Pollution in Developing Countries through Diffusion of Clean Cookstove Technology," MIC 2011: Managing Sustainability? Proceedings of the 12th International Conference, Portorož, 23–26 November 2011 [Selected Papers],, University of Primorska, Faculty of Management Koper.
    6. James D. Johnston & Megan E. Hawks & Haley B. Johnston & Laurel A. Johnson & John D. Beard, 2020. "Comparison of Liquefied Petroleum Gas Cookstoves and Wood Cooking Fires on PM 2.5 Trends in Brick Workers’ Homes in Nepal," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    7. Chia-Ching Lin & Chien-Chih Chiu & Po-Yen Lee & Kuo-Jen Chen & Chen-Xi He & Sheng-Kai Hsu & Kai-Chun Cheng, 2022. "The Adverse Effects of Air Pollution on the Eye: A Review," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    8. Jing Zhang & Roger Raufer & Lingxuan Liu, 2020. "Solar Home Systems for Clean Cooking: A Cost–Health Benefit Analysis of Lower-Middle-Income Countries in Southeast Asia," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    9. Prieur, Jacques, 2020. "Critical warning! Preventing the multidimensional apocalypse on planet Earth," Ecosystem Services, Elsevier, vol. 45(C).
    10. Berrueta, Víctor M. & Edwards, Rufus D. & Masera, Omar R., 2008. "Energy performance of wood-burning cookstoves in Michoacan, Mexico," Renewable Energy, Elsevier, vol. 33(5), pages 859-870.
    11. Samar Khairy Ghanem, 2018. "The relationship between population and the environment and its impact on sustainable development in Egypt using a multi-equation model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 305-342, February.
    12. Miyuki Noguchi & Atsushi Mizukoshi & Yukio Yanagisawa & Akihiro Yamasaki, 2016. "Measurements of Volatile Organic Compounds in a Newly Built Daycare Center," IJERPH, MDPI, vol. 13(7), pages 1-14, July.
    13. Zhang, Daisheng & Aunan, Kristin & Martin Seip, Hans & Larssen, Steinar & Liu, Jianhui & Zhang, Dingsheng, 2010. "The assessment of health damage caused by air pollution and its implication for policy making in Taiyuan, Shanxi, China," Energy Policy, Elsevier, vol. 38(1), pages 491-502, January.
    14. Kyran O'Sullivan & Douglas F. Barnes, 2007. "Energy Policies and Multitopic Household Surveys : Guidelines for Questionnaire Design in Living Standards Measurement Studies," World Bank Publications - Books, The World Bank Group, number 6615.
    15. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    16. Mandal, Salim & Zaveri, Ankita & Mallick, Rahul & Chouhan, Pradip, 2020. "Impact of domestic smokes on the prevalence of acute respiratory infection (ARI) among under-five children: Evidence from India," Children and Youth Services Review, Elsevier, vol. 114(C).
    17. Mukhopadhyay, Kakali & Forssell, Osmo, 2005. "An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973-1974 to 1996-1997," Ecological Economics, Elsevier, vol. 55(2), pages 235-250, November.
    18. Victor M. Berrueta & Montserrat Serrano-Medrano & Carlos García-Bustamante & Marta Astier & Omar R. Masera, 2017. "Promoting sustainable local development of rural communities and mitigating climate change: the case of Mexico’s Patsari improved cookstove project," Climatic Change, Springer, vol. 140(1), pages 63-77, January.
    19. Anna Ruth Pickett & Michelle L. Bell, 2011. "Assessment of Indoor Air Pollution in Homes with Infants," IJERPH, MDPI, vol. 8(12), pages 1-19, December.
    20. Brendon R. Barnes, 2014. "Behavioural Change, Indoor Air Pollution and Child Respiratory Health in Developing Countries: A Review," IJERPH, MDPI, vol. 11(5), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1483-:d:226164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.